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That number is the answer,
in the way that numbers answer.

That simple notion,
a coincidence among coincidences,

is all one needs to know.

Robert Ashley – Perfect Lives
Act 7: The Backyard (T’Be Continued)
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Preface

This dissertation is a product of about four and a half years of diligent study
and incessant attempts at creating, finding, understanding and solving prob-
lems. Obviously, most of these attempts have failed mercilessly. Where they
have failed, I invariably learned something. Where they have succeeded, the
question remains whether the problems were in fact interesting. While writ-
ing this dissertation, I often stumbled on old abandoned ideas that I regret not
having worked on with more perseverance. On the other hand, I found that
for some of the things I did work on with perseverance, the latter was perhaps
unjustified. I suppose this is the cruel fate of a scientist, which is somewhat
exacerbated when working in relative isolation. At any rate, I had the oppor-
tunity to learn a lot, and because of that, it was well worth the effort.

In this text, I decided to collect most of my work in statistical evolutionary
genomics, which certainly constitutes the most developed and unified part of
the research I have done (which need not say much). The focus of the work is
methodological and empirical. When I started on these projects a couple of
years ago, I had, like many biologically trained aspiring researchers, a rather
confused view on what statistics is and how one should do it. This dissertation
reflects my gradual appreciation of what statistics is (or should be) and what it
does (or can do) for the sciences, instigated byworking on the problems I faced
when trying to do research in evolutionary genomics. In that regard, I hope
my thesis can communicate some of my enthusiasm about Bayesian statistical
modeling in science, and in particular in those fields where this involves more
than Gaussian distributions and linear regression models.

After this short preface (and the summary), I will switch to using the pronoun
‘we’. This will be the so called pluralis modestiae, as all chapters were written
by myself. I have been unable to adopt the ‘I’ pronoun throughout. Whether
this is a sign of modesty or rather reluctance to bear individual responsability,
I leave to the reader to judge. Virtually everything included in this thesis is
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unpublished in the presented form, and where material is included that has
appeared elsewhere before, this will be indicated accordingly. If, at times, the
reader should wish to accuse me of logorrhea, I have little excuse but that
I (still) do not find biology, nor statistics, easy topics to write on. I had the
intent to write a short dissertation, but in part due to the urge to include many
examples, this failed. If, moreover, the reader would find that I use too many
footnotes for a scientific text, my only excuse shall be that I like footnotes. I
assure the reader that they really are footnotes, and can be safely ignored.

While my PhD was largely a solo endeavor (and certainly too much so), there
are of course a number of people who I wish to thank.

On the academic side, let me first thank my promotor, Yves, for trusting and
supporting me, and for giving me the freedom to lay out my own research
agenda. Whether granting me that freedom has beared its fruits, I again leave
for the reader of this dissertation to judge. In addition, I warmly thank the
members of the bioinformatics and evolutionary genomics group for their
kindness and interest. I would also like to express my gratitude to the mem-
bers of the examination committee for taking the effort to read my dissertation,
as well as for their general appraisal and constructive feedback.

Next, I would like to thank professor Gertrudis Van de Vijver, for involving
me in organizing her philosophy course on the life sciences and for infusing
me with the Kantian spirit. I can only hope I have been reasonably attentive
to the constitution of objectivity in the present work. At least I know I tried.

Among my friends, special thanks are due to Michiel, who has been, besides
a friend, my closest colleague the last couple of years. Then, in approximate
order of shared beers, I thank Brent, Torben, Jef and Siemen, [short pause
for breath], Emiel, Lisa, Loïc, Janne, Elias, Brecht, Fien, Henri, Tom, Lukas,
Stijn, Thomas, Ennio, Maarten, etc.

Infinite gratitude is due to my parents for their unconditional support and for
making my life, up till now, (reasonably) easy. I would not wish to forget to
thank my brother, in particular for tolerating me, which can be challenging, so
I heard. My warm thanks also to my silly little feline friend, Rik.

Lastly, I am left searching for words to thank Katrien, without whom my life
is literally unimaginable. I have lost track of where I end and you begin, and
that is totally OK with me.

Arthur Zwaenepoel – September 21, 2022
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Summary

Genome sequencing projects in the last two decades have resulted in a deluge
of whole-genome data sets for a large number of species across the tree of
life. These data reveal the staggering extent of extant genomic diversity, and
call for close attention to the evolutionary processes which generate that di-
versity. The latter demand is what the field of evolutionary genomics seeks to
address. Making sense of genomic diversity is however not straightforward,
and requires the development of statistical models for the relevant evolution-
ary processes, in order to quantify rates of genome evolution by various causes,
and enable the reconstruction of evolutionary history in a principled way. It
is to this broader challenge that this dissertation is dedicated.

In the present work, I start from the conception of a genome as a ‘bag of
genes’, evolving over long time scales through processes of speciation, poly-
ploidization, hybridization, gene duplication and gene loss. Using probabilis-
tic models of gene family evolution which account for these processes, I devise
Bayesian hierarchical models to study evolutionary change and reconstruct
evolutionary histories at the genomic scale. The work is firmly rooted in sta-
tistical phylogenetics, with a distinctively Bayesian commitment to assessing
the adequacy of the assumed models in light of the observed data.

In the first half of this dissertation, I focus on models of gene content evo-
lution along a known species tree. After briefly considering models for the
paranome age and size distribution, I conduct an in-depth study of phyloge-
netic birth-death process models of gene family evolution, and devote special
attention to the modeling and inference of ancient whole-genome duplications
using statistical approaches. A new model for gene family evolution by gene
duplication and loss based on a two-type branching process is proposed and
studied in detail. In the second half of this dissertation, I switch to a more
explicitly phylogenomic point of view, modeling the evolutionary processes
which shape gene family phylogenetic trees at a genomic scale. I develop a
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new approach for likelihood-free Bayesian inference of species trees under
the multispecies coalescent model from observed empirical gene tree distribu-
tions. Lastly, I describe an approach for Bayesian gene tree reconciliation of
multi-copy gene families under birth-death process models of gene family evo-
lution and revisit the problem of statistically inferring ancient whole-genome
duplications in a phylogenetic context. A brief conclusion and outlook on the
future of statistical evolutionary genomics ensues.
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Samenvatting

De zogeheten ‘genoomprojecten’ van de laatste kwarteeuw hebben een ware
zondvloed aan grootschalige genomische data sets voortgebracht, zodat van-
daag complete genoomsequenties beschikbaar zijn voor een aanzienlijk aantal
taxa. Deze data onthullen een overweldigende diversiteit op het genomische
niveau, die een nauwlettende aandacht eist naar de evolutionaire processen
die deze diversiteit kunnen veroorzaken. Deze laatste eis is waar de evolu-
tionaire genomica aan tracht tegemoet te komen. Het begrijpelijk maken van
genomische diversiteit is echter allesbehalve vanzelfsprekend, en vereist de
ontwikkeling van statistische modellen voor de relevante evolutionaire pro-
cessen. Dergelijke modellen maken het mogelijk om, op basis van genomis-
che data, de snelheden waarmee deze processen zich voltrekken te bepalen,
alsook om de evolutionaire geschiedenis die met specifieke data geassocieerd
is op een statistische basis te reconstrueren. Deze dissertatie is gewijd aan
deze uitdagingen.

Ik vat mijn studie in het huidige werk aan met de conceptie van een genoom
als een ‘zak met genen’, die evolueert over uitgestrekte tijdsintervallen aan
de hand van speciatie, polyploidisatie, hybridisatie, genduplicatie en genver-
lies processen. Ik ontwikkel Bayesiaanse hiërarchische statistische modellen
voor de grootschalige evolutie van genomen en de reconstructie van evolu-
tionaire geschiedenissen, gebruikmakende van probabilistischemodellen voor
genfamilie evolutie die laatstgenoemde processen in rekening brengen. Het
hele werk is sterk verankerd in statistische fylogenetica, met een uitdrukkelijk
Bayesiaanse toewijding aan het kritisch evalueren van de adequaatheid van
aangenomen theoretische modellen voor empirische data.

In de eerste helft van deze dissertatie leg ik de focus op modellen voor
de evolutie van het aantal genen in een genfamilie in de context van een
aangenomen evolutionaire geschiedenis voor de relevante genomen. Na
een korte beschouwing van modellen voor genfamilie evolutie in een
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enkel genoom, ga ik over op een diepgaande evaluatie van fylogenetische
birth-death proces modellen voor de evolutie van genfamilies. Ik besteed bij-
zondere aandacht aan het modelleren en statistisch detecteren van historische
genoomduplicaties. Daarna ontwikkel ik een nieuw probabilistisch model
voor genfamilie evolutie gebaseerd op een tweesoortig vertakkingsproces
(two-type branching process) om tegemoet te komen aan enkele van de
problemen blootgelegd in de voorgaande studie. In de tweede helft van deze
dissertatie verander ik van perspectief en beschouw ik meer expliciet de
evolutionaire geschiedenissen van individuele genfamilies. Hier is het doel
om de evolutionaire processen die variatie veroorzaken in fylogenetische
bomen overheen het genoom te modelleren en in kaart te brengen. Ik on-
twikkel een nieuwe likelihood-free Bayesiaanse methode om de evolutionaire
geschiedenis op genoomniveau te reconstrueren onder de assumpties van het
multispecies coalescent model, gebruikmakende van empirische distributies
over genfamilie-specifieke fylogenetische bomen. In het laatste onderzoek
in deze dissertatie beschrijf ik een methode voor Bayesiaanse reconciliation
analyse met behulp van fylogenetische birth-death proces modellen. Ik
beschouw opnieuw in detail het bepalen van historische genoomduplicaties
in een fylogenetische context aan de hand van statistische methoden. Met
een korte conclusie en blik op de uitdagingen en toekomst van de statistische
evolutionaire genomica sluit ik deze dissertatie af.
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List of abbreviations and symbols

Abbreviations

ABC approximate Bayesian computation
AD automatic differentiation

ALE amalgamated likelihood estimation
ASDF average standard deviation of split frequencies
BDP birth-death process
CCD conditional clade distribution

CTMC continuous-time Markov chain
DL duplication and loss

DLF duplication, loss and 𝑥-functionalization
DLWGD duplication loss and WGD

DP dynamic programming
EP expectation propagation

ESS effective sample size
GO Gene Ontology

GTR general time-reversible [model]
HGT horizontal gene transfer
HMC Hamiltonian Monte Carlo

iid independent and identically distributed
ILS incomplete lineage sorting
IS importance sampling
JC Jukes & Cantor [model]

K80 Kimura’s 1980 [model]
KL Kullback-Leibler [divergence]

LRT likelihood ratio test
MAP maximum a posteriori
MBM Markov branching model

MCMC Markov chain Monte Carlo
MCSE Monte Carlo standard error

ML maximum likelihood
MLE maximum likelihood estimate
MP maximum parsimony

MRCA most recent common ancestor
MSC multispecies coalescent

NUTS no U-turn sampler
pdf probability density function



2

pgf probability generating function
pmf probability mass function

rjMCMC reversible-jump Markov chain Monte Carlo
SBN subsplit Bayesian network
SIS sequential importance sampling
SSD small-scale duplication

SSDL small-scale duplication and loss
WGD whole-genome duplication
WGM whole-genome multiplication
WGT whole-genome triplication

Symbols & notation

General
[1..𝑛] set of integers from 1 to 𝑛(𝐴) powerset of set 𝐴|𝐴| cardinality of set 𝐴

𝔼 expectation
ℙ probability measure

𝟙𝐴(⋅) indicator function for set 𝐴, also 𝟙[⋅ ∈ 𝐴]
𝛿𝑥(⋅) Dirac delta function at 𝑥

𝐺(𝑉 ,𝐸) graph with vertex set 𝑉 and edge set 𝐸
𝑝(⋅) generic probability distribution (density or mass function)

𝑝(⋅|⋅) generic conditional probability distribution (density or mass function)
𝑦 generic data point or data set
𝜃 generic parameter (𝜇, 𝜎2) normal distribution with mean 𝜇 and variance 𝜎2

𝐾S synonymous distance
My million years
Gy billion years
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𝜆 birth (duplication) rate
𝜇 death (loss) rate

𝑋(𝑡) a continuous-time branching process
𝑝𝑖𝑗 (𝑡) transition probability ℙ{𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖}
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𝑔(𝑠) pgf for the offspring distribution of a branching process

𝑓 (𝑠, 𝑡) pgf for a continuous-time branching process starting at 𝑋(0) = 1
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𝑆 species tree
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𝜚(𝑢) parent node of node 𝑢⟨𝑢, 𝑣⟩ branch from node 𝑢 to 𝑣
𝑡𝑢 length (duration) of the branch leading to node 𝑢
𝑆𝑢 subtree of 𝑆 rooted in node 𝑢
𝑋𝑢 random gene count at vertex 𝑢 of 𝑆
𝑋[𝑢] random phylogenetic profile associated with 𝑆𝑢, i.e. (𝑋𝑣∶ 𝑣 ∈ (𝑆)
𝑋 shorthand for 𝑋[𝑜]
𝑌𝑢 number of genes at node 𝑢 which leave observed descendants in (𝑆𝑢)

𝑓𝑢(𝑠) pgf for 𝑋𝑢 conditional on 𝑋𝜚(𝑢) = 1, i.e. 𝑓 (𝑠, 𝑡𝑢)
𝑔𝑢(𝑠) pgf for 𝑋𝑢

𝜖𝑢 probability that a single lineage at 𝑢 leaves no observed descendants
𝑍𝑘(𝑡) number of descendants at time 𝑡 of gene 𝑘
𝑞𝑖𝑗 (𝑡) transition probability ℙ{𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖, 𝑍1(𝑡) > 0,… , 𝑍𝑖(𝑡) > 0}

𝜋 prior distribution for 𝑋𝑜
𝐸𝑢 the event of extinction below 𝑢, i.e. 𝑋[𝑢] = (0, 0,… , 0)
𝜂 mean parameter for 𝜋
𝜁 dispersion parameter for 𝜋 when a beta-geometric distribution
𝑞 generic WGD retention probability (also referred to as retention rate)1
𝐾 Bayes factor in favor of 𝑞 = 0 (Savage-Dickey density ratio)
𝜇𝑟 death rate for redundant genes in the DLF model
𝜇𝑛𝑟 death rate for non-redundant genes in the DLF model
𝜇1 death (loss) rate of a type 1 gene
𝜇2 death (loss) rate of a type 2 gene
𝜈 𝑥-functionalization rate (type 2 to type 1 transition)

𝑝𝑖𝑗 (𝑘, 𝑙, 𝑡) transition probability ℙ{𝑋(𝑡) = (𝑘, 𝑙)|𝑋(0) = (𝑖, 𝑗)} for the two-type model
𝑓𝑖𝑗 (𝑠1, 𝑠2, 𝑡) pgf for the transient distribution of the two-type model

𝑔(𝑢)𝑖𝑗 (𝐬) joint pgf for the phylogenetic two-type model conditional on 𝑋𝜚(𝑢) = (𝑖, 𝑗)

Chapter 4
𝑐𝑛 number of rooted trees with 𝑛 leaves random tree topology (cladogram)( ) clade set for 
𝛾 generic clade (i.e. a generic element of ( ) for some  )
𝛿 generic split of a clade (i.e. an element of (𝛾) for some 𝛾)

𝑞𝑛(𝑖) clade size distribution for a MBM
𝜃𝛾 split distribution for clade 𝛾 in a CCD
#𝛾 number of possible splits of clade 𝛾
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𝐺 gene tree
𝜙 branch parameters
𝑁 coalescent-effective population size (also 𝑁𝑒)
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𝑙𝑖(𝑥) likelihood factor of site 𝑖 in the context of EP
𝑞(𝑥) EP global approximation
𝑞𝑖(𝑥) EP site approximation for site 𝑖

𝑞−𝑖(𝑥) EP cavity distribution for site 𝑖

1The letters 𝑞 and 𝑝 appear to be rather heavily overloaded throughout the present dissertation.
However, the risk of confusion should be limited within any particular chapter.
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𝑞∖𝑖(𝑥) EP tilted distribution for site 𝑖
𝐶𝑖 EP normalizing constant associated with site 𝑖
𝜂𝛾 natural parameter associated with clade 𝛾 in a CCD

Chapter 6𝑦 set of gene trees compatible with sequence data or phylogenetic profile 𝑦 reconciled gene tree
𝜌 reconciliation map

𝑝𝑒(𝑢, 𝑡) probabiity of lineage leading to gene tree node 𝑢 passing through time
point 𝑡 along species tree branch 𝑒

𝜙𝑒(𝑡, 𝑡 + Δ𝑡) single-lineage propagation probability over a time slice of length Δ𝑡
𝜓𝑒(𝑡, 𝑡 + Δ𝑡) single-lineage represented duplication probability over a time slice of

length Δ𝑡
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1 Introduction

The present work aims to an understanding of genomic diversity from an evo-
lutionary point of view, and this introductory chapter serves to delineate the
scope of that endeavor, while situating the work presented in this dissertation
within it. We will see that questions about evolutionary history, and our abil-
ity to learn about the evolutionary process from history, are (or at least should
be) intimately related to statistical issues, and we will come to the thesis de-
fended throughout this work; namely that the empirical study of evolution
using genomic data, and the attempt to make sense of genomic data from an
evolutionary perspective, are best conceived as statistical problems, where for-
mal models of evolution are devised and confronted with data using Bayesian
logic. We end by sketching, with broad brushstrokes, the kind of models we
shall deal with in this dissertation.

1.1 Making evolutionary sense of genome data

1.1.1 Evolutionary biology and the genomic deluge

It’s a history book – a narrative of the journey of our species through time.
It’s a shop manual, with an incredibly detailed blueprint for building
every human cell. And it’s a transformative textbook of medicine, with
insights that will give health care providers immense new powers to treat,
prevent and cure disease.

– Francis Collins1

After the human genome project was brought to (near) completion (Lander
et al. 2001), it became clear that, despite ideological advertisements like the

1https://www.genome.gov/human-genome-project, last accessed May 22, 2022.

https://www.genome.gov/human-genome-project/What
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above, it did not solve that much. It did not yield a ‘blueprint for building
every human cell’, nor cancer cure, and did not provide a ‘narrative’ of our
evolutionary history. Doubtlessly, it has contributed to many new insights on
these matters, but it should not be controversial to state that the net result was
somewhat underwhelming. There seems to be no ‘book of life’ that we can
read to solve all of biology. In fact, the main effect of the genomic revolution
was to give birth to more questions2, leading to the many ‘-omics’ fields we
have today. If something became crystal clear after the human genome project,
it was that our ability to measure increasingly minute bits of matter vastly
surpassed our ability to make biological sense of these measurements. We
may sooth ourselves with the (questionable, to say the least) idea that all of
biology is, somehow, in there (i.e., to use the book metaphor: there is a book,
but it is written in a foreign language and unknown script), but that does not
change the state of biology, only biologists.

Today, hundreds, if not thousands, of genomes have been sequenced to near
completion from all over the tree of life. While these genome projects have
contributed greatly to our appreciation of diversity at the genomic level, our
inability to interpret all these data persists. One mode of interpretation, of
making sense of these data, is making evolutionary sense of it, that is, to try
to grasp how these data came to be, and why these (rather than different) data
came to be, in the light of evolutionary theory. In other words, we can try to
explain extant genomic diversity on the basis of evolutionary principles. This
is a popular mode of interpretation, which has, since the so-called ‘Modern
Synthesis’3, been increasingly considered as the mode of interpretation in bi-
ology – a tendency epitomized in the famous title of a somewhat less famous
article of Dobzhansky: “Nothing in biology makes sense except in the light
of evolution” (Dobzhansky 1973). This brand of evolutionism invites us to
give an evolutionary explanation for every biological phenomenon. In Ernst
Mayr’s terms, to seek the ‘ultimate’ (as opposed to ‘proximal’) cause of bio-
logical phenomena (Mayr 1988). Dually, we may wish to use genomic data to
make sense of evolution, that is, we may use genomic data to test theories and
hypotheses about the evolutionary process. This is not the same as providing
evolutionary explanations for observed genomic diversity, but is, or should be

2Which is of course a good thing, if, and only if, these happen to be the right questions.
3I am referring here to the ‘second phase’ of the Modern Synthesis, or the development of

‘the synthetic theory of evolution’, rather than its ‘first phase’, which corresponds to the synthesis
of Mendelism and Darwinism (e.g. Provine 1971; Mayr and Provine 1980; Gould 2002). The
former is associated with people like Huxley, Mayr, Dobzhansky, Stebbins and Simpson, whereas
the latter is associated with the birth of theoretical population genetics and the illustrious names
of Haldane, Wright and Fisher.
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(I contend), closely related to it.

Influenced perhaps by its roots in natural history, such evolutionary expla-
nations have often amounted to presenting a plausible historical narrative of
adaptive divergence. In the polemic words of Michael Lynch:

For the vast majority of biologists, evolution is nothing more than nat-
ural selection. This view reduces the study of evolution to the simple
documentation of differences between species, proclamation of a belief
in Darwin, and concoction of a superficially reasonable tale of adaptive
divergence. (Lynch 2007)

In particular, much of the popular scientific literature on evolution takes this
form. It is however not restricted to popular science. In evolutionary genomics
this leads to questions of the form “Why has the genome of species 𝑋 less
genes for pathway 𝑃 than species 𝑌 ?”, with answers in the form of a ‘reason-
able tale of adaptive divergence’, e.g.: “Because species 𝑋 evolved to live in
habitat 𝐴, whereas species 𝑌 descends from a lineage that adapted to habitat
𝐵”. Research papers with the generic title “Genome 𝑋 provides insights in
the evolution of 𝑃 ” often display these kinds of evolutionary tales. Here is a
sample of recent literature:

The chromosome-level genome assembly of the Japanese yellowtail jack
Seriola aureovittata provides insights into genome evolution and effi-
cient oxygen transport (Li et al. 2022)

The flying spider-monkey tree fern genome provides insights into fern
evolution and arborescence (Huang et al. 2022)

Chromosome-level pepino genome provides insights into genome evolu-
tion and anthocyanin biosynthesis (Song et al. 2022)

The new Haemaphysalis longicornis genome provides insights into its
requisite biological traits (Yu et al. 2022)

Chromosome-level genome assembly of the dotted gizzard shad
(Konosirus punctatus) provides insights into its adaptive evolution (B.-J.
Liu et al. 2022)

As of May 2022, a search in the PubMed database reveals 351 hits for titles
including ‘genome’, ‘insights’ and ‘evolution’, and almost every day a new
article with similar-sounding title appears in our ‘Recommended articles’ list.
Bibliometrics hence suggest that insights in (genome) evolution are accumu-
lating at an unprecedented pace. We note that, whereas the generic title is



8

formed in a way suggestive of the second aspect of evolutionary genomics –
i.e. using genomic data to make sense of evolution (supposedly, the genome
provides insights in evolution, not the other way around) – it is at least equally,
and probably more, the reverse direction of explanation that features in these
papers. Indeed, first and foremost, these papers seek to fit genomic data in a
historical evolutionary narrative.

Of course, this is a reasonable thing to do, and indeed, such evolutionary tales
enable us to make sense of observed genomic diversity which remains unintel-
ligible otherwise. However, as has been pointed out already a long time ago,
for instance in the famous paper by Gould and Lewontin (1979) or Antonovics
(1987)4, and reiterated forcefully in recent times by people likeMichael Lynch,
there are considerable problems with the kind of adaptive storytelling that per-
vades evolutionary explanations for biological phenomena. The main issue
lies not so much in these sort of speculative explanations themselves, which
indeed may be true, but in the scientific ideology5 that goes with them, which
says that concocting a superficially plausible adaptive story finishes the job
of the evolutionist. In that regard, as Gould and Lewontin (1979) noted, evo-
lutionists often use consistency with evolution by natural selection as main
criterion for assessing the scientific merit of an evolutionary explanation.

We would like, however, to bring evolutionary explanation in genomics, and
dually, our study of the evolutionary processes affecting genomes, to the same
standards as those adopted elsewhere in natural science. This means, con-
structing models on the basis of evolutionary theory, and testing these models
by confronting them with data, introducing a critical dimension in evolution-
ary explanation. This, at the same time, brings the two aspects of evolutionary
genomics closer together: to explain genomic diversity by means of models of
evolution tells us something about the evolutionary process. In other words,
coming up with a plausible adaptive tale should not be the goal of evolutionary
biology, but rather the starting point, a hypothesis to be evaluated. To quote

4“The presentation of a confirmed theory of such broad scope led to a complacent acceptance
and reduced evolutionary biology to everybody’s toy and plaything. The ability to generate a
simplistic speculation about some putative past selection process seemed to qualify anyone as
an evolutionary biologist and, perhaps worse, led others to imagine that this is what professional
evolutionary biologists do.” – Antonovics (1987)

5Here we would like to refer to a splendid article by French philosopher Georges Canguilhem
(Canguilhem 1977), from whom we learned to appreciate the concept of scientific ideology. We
need to be careful here however, qualifying something prematurely as ideology is subscribing
to another one. “La qualification comme idéologie d’un certain assemblage d’observations et
de déductions, est postérieure à sa disqualification comme science par un discours qui délimite
son champ de validité et qui fait ses preuves par la cohérence et l’intégration de ses résultats.”
(Canguilhem 1977, p41–42)
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from Lynch (2007) again: “A strong belief in cells does not make one a cell
biologist, and a strong belief in Darwin’s principle of natural selection is not
a sufficient condition for understanding evolution”.

1.1.2 Evolutionary history, models and statistics

Wat voor de meeste beoefenaren van exacte wetenschappen vanzelf
spreekt, maar toch nog wel eens herhaald mag worden, omdat dit inzicht
niet zeer verbreid is onder de velen die zulke vakken als sociologie,
economie en geschiedschrijving beoefenen, is dit: de natuur is altijd
compleet aanwezig, het verleden nooit.

– W. F. Hermans (1981)6

The goal of providing evolutionary explanations for observed diversity is in-
timately related to the problem of reconstructing evolutionary history. Relat-
edly, to study the evolutionary process, we cannot, usually, evaluate our the-
ories and models in the same way as we can, for instance, in mechanics, but
have to rely on fragmentary observations of a long historical process. Indeed,
evolution is in a way, like history, never completely present. Yet, the empirical
study of evolution need not be relegated to the historian7. Indeed, the general
principles and laws of evolutionary biology allow us to construct models of
evolution which generate historical predictions8, so that we can confront our
models with empirical data. This brings us quickly into statistics, which we
take to be the general attempt to formalize empirical methods in science, or
more plainly, the science of confronting models with empirical data.

The reconstruction of evolutionary history is, roughly, the subject matter of the
field known as phylogenetics, which has indeed gradually, but with consider-

6W. F. Hermans (1921 – 1995) was a Dutch scientist and (prolific) author of novels, poetry
and essays. A pessimistic positivist with an academic career in physical geography, many of his
essays reflect on the sciences. The quoted passage can be freely translated as: “What is evident
for most researchers in the exact sciences, but might nonetheless be repeated from time to time,
as this insight is not widespread among those who work in fields like sociology, economics or
history, is the following: nature is always completely present, the past never is.”

7We do not wish to suggest that the natural historian is superfluous, and has no claim to im-
portant contributions in (evolutionary) biology. That would be preposterous, recognizing that the
whole field owes its very existence to the study of natural history. To recognize and accurately
describe the diversity of living forms, and to conceive hypotheses on the evolutionary causes of
that diversity was, and remains, needless to say, a vital component of the whole enterprise.

8This is of course an awkward term when what we are really talking about are postdictions.
I will however stick to the common employment of the word prediction in the statistical sense
– i.e. the use of a model to say something about unobserved quantities, whether or not these
characterize past, present or future observables.
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able pain (see the reminiscences in Felsenstein 2001), transformed into a statis-
tical business. Not unlike how general physical principles inform historical in-
ferences in geology, the principles of evolutionary genetics (Mendelism, com-
mon descent, mutation, recombination, population genetic constraints, etc.),
together with information from previous observations, inform evolutionary
models and inferences in phylogenetics. Using models of evolution, inference
of the ‘incompletely present’ evolutionary history from observed data is no
different from inference for unobserved quantities elsewhere in statistics.

If our goal is to study the evolutionary process per se, rather than to reconstruct
particular evolutionary histories, we take a similar viewpoint. Indeed, to study
evolution, in our view, amounts to devising formal models of the evolutionary
process of interest and confronting them with empirical data9. Note, however,
an important reversal that takes place here: while the phylogenetic concern is
largely driven by the desire to make evolutionary sense of given data, the focus
here is on evaluating models using empirical data, which suggests the data to
come afterwards, somehow. Indeed, in theoretical matters, constituting what
is considered as data is part of the scientist’s job. It is, however, much more
common to be confronted with empirical data for which a formal model is to
be constructed. That is, the models we shall be considering and questions we
shall be asking tend to be conditioned by the data from the outset, at least to
an important extent. In particular, with regard to questions in genome evolu-
tion, the sorts of questions we succeed in asking are strongly conditional on
the data available (essentially text files of nucleotide sequences). While this
may sound as a platitude, or at least as inevitable, it is important to be aware
of such constraints. Furthermore, it tends to bring us even more into statistics,
that is, in its practical aspects, where not only the inferential task gets its dis-
tinctly statistical flavor, but also the devising and revising of the very models
of interest becomes increasingly a statistical endeavor.

1.1.3 Probabilistic models of evolutionary processes

Our goal is hence to devise formal models of the evolutionary process, but
what do such models look like? Clearly, there is no equation, like 𝑦 = 𝑔𝑡2∕2

9The sociologist Charles Tilly puts the reasons for preferring such an approach clearly: “Post
hoc interpretation of data minimizes the opportunity to recognize contradictions between argu-
ments and evidence, while adoption of formalisms increases that opportunity. Formalisms blindly
followed induce blindness. Intelligently adopted, however, they improve vision. Being obliged
to spell out the argument, check its logical implications, and examine whether the evidence con-
forms to the argument promotes both visual acuity and intellectual responsibility.” (Tilly 2004)
(quoted in Gelman and Shalizi 2013)
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Figure 1.1: Evolutionary processes do not preserve all historical information in present-
day data. On the left, the present-day (observed) pattern of states for a pair of homolo-
gous sites is shown, whereas on the right, the evolutionary history with all substitutions
that did occur is shown. While under the assumption of common descent (homology),
we know that at least one substitution must have occurred, we cannot tell how many
did in fact occur in the evolutionary history from present-day observations. Note that
even if we knew the ancestral state, we would still not be able to tell.

in classical mechanics, which can tell us what nucleotide sequence we are
supposed to observe after one million years of evolution given some suitable
initial conditions. The problems we meet are twofold. On the one hand, our
models will always be unable to take into account all relevant factors which
influence the evolutionary process. Clearly, the UV radiation strength in some
place on Saturday the 21st of November anno 20 million years (My) B.C. will
have an influence on whether or not a particular ancestral sequence at that time
and place in history underwent an 𝐴 to 𝐺 mutation, but it is of course impos-
sible to take this up in our model. Not only is it practically impossible (we
do not have the relevant measurements, nor the capability, computationally
and conceptually, to take all this information into account), it is also undesir-
able. Indeed, we do not consider these sorts of data relevant for evolutionary
explanations at such time scales, and would prefer a theory or model which
does not require such detailed information. On the other hand, we have the
problem that the evolutionary processes erase the historical signals they leave
in extant data over time. Indeed, when we observe a different nucleotide at a
homologous site in two homologous sequences (fig. 1.1), how can we know
whether one, two, or more mutations happened since their divergence?

Our concerns are hence analogous to those which have led physicists to adopt
probabilistic models in the field known as statistical mechanics. It is not only
the practical impossibility of tracking the dynamics of individual particles in
large physical systems which motivates, for instance, the kinetic theory of
gases, but also themore positive conviction that the detailed dynamics of these
particles should not feature explicitly in a scientific explanation for the ther-
modynamic behavior of these systems. Hence, as a result of these considera-
tions, our models will be stochastic, and if they are not, they will typically be
conceived as approximations of stochastic models (chapter 2 provides some
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examples of the latter situation). By deliberately ignoring certain aspects of
the process and taking them up in the model as having some random structure,
we hope to capture relevant aspects of the problem, while acknowledging vari-
ation due to causes whose effect is uncertain. We illustrate the sort of proba-
bilistic models we shall be using by presenting an important class of models
ubiquitously used in phylogenetics in the following example10.

Example (CTMC models of sequence evolution). An important class of
probabilistic models we shall be using often, but not deal with very explic-
itly, are continuous-time Markov chain (CTMC) models of sequence evolu-
tion. The most common such models describe the evolution of a single site
in a sequence over time as a Markovian stochastic process {𝑋(𝑡)} on a finite
state space. Let 𝑝𝑖𝑗(𝑡) = ℙ{𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖} be the transition probability
of going from state 𝑖 to state 𝑗 over a time span 𝑡. The Markov assumption for
a finite state space entails the Chapman-Kolmogorov identity

𝑝𝑖𝑗(𝑡) =
∑
𝑘

𝑝𝑖𝑘(𝑡 − Δ𝑡)𝑝𝑘𝑗(Δ𝑡)

The process is defined by its infinitesimal transition rates

𝑞𝑖𝑗 = lim
Δ𝑡↓0

𝑝𝑖𝑗(Δ𝑡) − 𝑝𝑖𝑗(0)
Δ𝑡

for every pair of states 𝑖 and 𝑗. A CTMC model for nucleotide substitution is
hence defined by an infinitesimal rate matrix (generator) with, in general, the
following form

𝑄 =

⎡⎢⎢⎢⎣
𝑞𝐴𝐴 𝑞𝐴𝑇 𝑞𝐴𝐶 𝑞𝐴𝐺
𝑞𝑇𝐴 𝑞𝑇𝑇 𝑞𝑇𝐶 𝑞𝑇𝐺
𝑞𝐶𝐴 𝑞𝐶𝑇 𝑞𝐶𝐶 𝑞𝐶𝐺
𝑞𝐺𝐴 𝑞𝐺𝑇 𝑞𝐺𝐶 𝑞𝐺𝐺

⎤⎥⎥⎥⎦
The rate matrix𝑄 is related to the transition probability matrix 𝑃 (𝑡) intuitively
in that, for smallΔ𝑡, 𝑃 (Δ𝑡) ≈ 𝐼+𝑄Δ𝑡. The model entails that, when currently
in state 𝑖, a substitution occurs after an exponentially distributed waiting time
withmean 1∕

∑
𝑗≠𝑖 𝑞𝑖𝑗 , uponwhich the chain (nucleotide site) takes a new state

𝑗 ≠ 𝑖, with probability proportional to 𝑞𝑖𝑗 . Different assumptions about the

10Throughout, we shall designate the start of an example by Example (title) and its end by a□
symbol. Hereby we apologize to those mathematicians who insist on reserving the □ for proofs.
There will be no formal proofs in this dissertation, so there is no risk of confusion. The goal of
our ‘example’ sections is to separate some of the technical content and concrete analyses from the
main argument, while nevertheless including these detailed treatments at the appropriate place
with respect to the latter.
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molecular evolutionary process can be encoded in the structure of 𝑄. For in-
stance, the simplest possible model (the so-called Jukes & Cantor (JC) model
(Jukes andCantor 1969)) assumes that, conditional on a substitution occurring,
all substitutions (from any given state) are equally likely, whereas Kimura’s
model (K80) (Kimura 1980) assumes that upon substitution, transitions (in the
molecular biological sense, i.e. purine to purine or pyrimidine to pyrimidine
substitutions) occur with a different probability than transversions.

We can derive a general solution for the transition probability matrix over any
time span 𝑡 by considering the Chapman-Kolmogorov equations

𝑝𝑖𝑗(𝑡 + Δ𝑡) =
∑
𝑘

𝑝𝑖𝑘(𝑡)[𝛿𝑗𝑘 + 𝑞𝑘𝑗Δ𝑡 + 𝑜(Δ𝑡)]

(where 𝛿𝑗𝑘 = 1 if 𝑗 = 𝑘 and 0 otherwise) or, in a single matrix expression,

𝑃 (𝑡 + Δ𝑡) = 𝑃 (𝑡)(𝐼 +𝑄Δ𝑡 + 𝑜(Δ𝑡))

Subtracting 𝑃 (𝑡) from both sides, dividing by Δ𝑡, and taking Δ𝑡 ↓ 0, we get
the Kolmogorov backward differential equation

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝑃 (𝑡)𝑄

Which gives us the intuitive solution 𝑃 (𝑡) = exp(𝑄𝑡) = 𝐼 +𝑄𝑡 + (𝑄𝑡)2∕2! +
(𝑄𝑡)3∕3! +…. Being able to compute transition probabilities for the process
is a prerequisite for efficient statistical inference under the model. □

Clearly, this is a very crude model of sequence evolution, glossing over the
many subtleties of the mutational process, but it is hard to imagine statistical
phylogenetics without it. The model admits asking several basic questions, of
the sort “Given evolutionary rates 𝑄 and initial state 𝐴, what is the expected
number of substitutions over a time span Δ𝑡? What is the probability that
the end state is 𝑇 ? What is the probability that more than five substitutions
happened? What is the expected total amount of time spent in state 𝐺? …”
Already, such quantities start to sound interesting, as we can imagine how they
can feature in scientific inferences about the processes of nucleotide substitu-
tion from observed sequence data.

But note that the CTMC model of sequence evolution in itself cannot tell us
much about observed sequence data. Indeed, given some sequence where we
assume the sites to evolve independently in accordance with such a CTMC
model, we cannot tell much about the sequence nor the likely parameters of
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Figure 1.2: (A) An example three-taxon phylogenetic tree. (B) A simplified represen-
tation of the PGM for the phylogenetic CTMC model associated with the tree in (A).

the evolutionary model. To actually do something interesting with these mod-
els, we need multiple realizations of the process. However, in an evolutionary
context, we do not, usually, have the typical kind of statistical sample consist-
ing of some number of independent realizations of the process. Instead, we
make observations of multiple non-independent realizations of the process in
different taxa (individuals, populations, species, …), related by some evolu-
tionary history. The simplest case, under the assumption of plain common
descent, is that the observed data are related by a tree structure, a phyloge-
netic tree or phylogeny, which represents ancestor-descendant relationships.
The usual strategy in phylogenetics is then to embed a model for an evolution-
ary process in a phylogenetic tree structure which describes the evolutionary
relationships of the observed data. We illustrate this for the CTMC models of
sequence evolution in the following example.

Example (phylogenetic CTMC model). Assume we sample nucleotide se-
quence data for three taxa, say, for definiteness, human, beaver and bear. Fur-
ther assume we have succeeded in identifying the homology relationships
among the different sites in the sequences, that is, those groups of sites which
descend from a common ancestral site. Assuming a one-to-one correspon-
dence between homologous sites in the different sequences, we obtain a se-
quence alignment, which can be represented as a matrix wherein each column
represents a site and each row represents a taxon. We assume that the taxa are
related by a phylogenetic tree, depicted in fig. 1.2 (A), and assume that, for
each site, the CTMC model operates independently along different branches
of the tree from past to present, where at each bifurcation in the tree, two in-
dependent CTMC processes are started with as initial state the end state of
the parent branch. The resulting evolutionary model is called a phylogenetic
CTMC model (e.g. Höhna et al. 2014). More explicitly, for a given node 𝑣 in
the tree, we denote by 𝑋𝑣 ∈ {𝐴, 𝑇 , 𝐶,𝐺} the random variable which repre-
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sents the state at that node. The phylogenetic tree together with the𝑋𝑣 define a
probabilistic graphical model (PGM) (Jordan 2003; Höhna et al. 2014) shown
in fig. 1.2 (B). When node 𝑣 has parent node 𝑢, the phylogenetic CTMCmodel
entails that the probability distribution for 𝑣 is given by

ℙ{𝑋𝑣 = 𝑗|𝑋𝑢 = 𝑖} = 𝑝(𝑣)𝑖𝑗 (𝑡𝑢𝑣) =
[
exp(𝑄(𝑣)𝑡𝑢𝑣)

]
𝑖,𝑗

where 𝑝(𝑣)𝑖𝑗 (𝑡) are the transition probabilities for the ordinary CTMC which
is assumed to operate along the branch leading to node 𝑣 (see above). Note
that, in general, we may assume different Markov processes for the different
branches of the phylogeny, so that in the three-taxon example we would have
four different rate matrices defining the phylogenetic CTMC process. The
basic assumption of the phylogenetic CTMC, captured by its PGM represen-
tation, entails the following conditional independence relationship for a node
𝑢 with descendant nodes 𝑣 and 𝑤

ℙ{𝑋𝑣 = 𝑖, 𝑋𝑤 = 𝑗|𝑋𝑢 = 𝑘} = ℙ{𝑋𝑣 = 𝑖|𝑋𝑢 = 𝑘}ℙ{𝑋𝑤 = 𝑗|𝑋𝑢 = 𝑘}

This completely defines the probabilistic structure of the model and can be
used to compute various expectations given a suitable parameterization. For
instance, given some prior distribution on the root state and the rate matrices
for the different branches, one can, by appropriately marginalizing over an-
cestral states (using the so-called pruning or variable elimination algorithm),
compute the probability of an observed column in the sequence alignment
under the model. □

The basic model outlined in the preceding example underlies that part of sta-
tistical phylogenetics that is most used in practice. In a statistical context, the
model admits asking questions like: “What is the probability to observe 𝐴 in
human, 𝑇 in beaver and 𝑇 in bear for a putative homologous site assuming
the phylogenetic tree in fig. 1.2?”. The latter question shows how the model
provides us with a probability yardstick to assess hypotheses as to which phy-
logeny is somehow most likely to represent the true branching pattern of the
taxa under consideration. The latter is sometimes considered the core objec-
tive of phylogenetics in general, but it should be clear that the basic model ad-
mits addressing many other questions about the evolutionary process (e.g. are
the rates of evolution similar across the branches of the tree? What is the likely
ancestral state?).

Before moving on to statistics, a few more words about probability must be
said at this stage. It is quite common for authors in evolutionary biology to as-
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sert that evolution is a stochastic process11, but this conflates the evolutionary
process with our knowledge thereof. By adopting stochastic models, we do
not necessarily subscribe to a view that evolution would somehow be stochas-
tic, only that we are in a state of uncertainty when it comes to knowledge
about these processes. Note that we are not ready to discount the statement
that evolution would be inherently stochastic (that would depend strongly on
just what precisely we understand ‘evolution’ to consist of and what we take
probability to mean). We simply wish to note that this need not be relevant
for our adoption of stochastic models, much in the same way as it does not
matter whether or not the universe is deterministic (or whether that is a mean-
ingful question) when we use the predictions of thermodynamics. Organic
evolution is no more a problem for Laplace’s demon than celestial mechanics.
Probability is for us then, first and foremost, an epistemic concept, serving as
a quantitative measure of a state of uncertainty about a logical proposition.12
Our adoption of probabilistic models merely signals a willingness to reason
quantitatively in the face of uncertainty, and involves no positive statement
about any kind of non-determinism13.

1.2 Bayesian statistics

Establishing models, probabilistic or otherwise, does not, in itself, have any-
thing to do with empirical data. As we have already noted above, confronting
models with empirical data is the subject domain of statistics. Again, we
point out that, in practice, statistics also takes up a role in the reverse direc-
tion, which consists of devising (relatively generic) models to make sense of
empirical data (think of linear regression, ANOVA etc.), which are widely
adopted across the sciences. In other words, practical statistics is not only
about inference and criticism for given scientific models, but also about the

11For a list of illustrative quotations, the reader may consult the appendices of Stoltzfus (2021).
Here is one from Lynch (2007), from whom we have been quoting already quite a bit: “Evolution
is an inherently stochastic process, starting from the chance events that produce single mutations
in single individuals and proceeding through a series of fortuitous steps that gradually lead to the
spread of those mutations to every member of the descendent population.”

12For a compelling argument as to why probability as usually formalized in mathematics (i.e. in
measure theoretic terms) corresponds to an adequate quantitative measure for the plausibility of
propositions, we refer the reader to Jaynes (2003) and Cox (1961).

13Indeed, as Harold Jeffreys stressed, any theory of probability which would make positive
claims about the world of this sort would be highly suspect: “If the rules of themselves say
anything about the world, they will make empirical statements independently of observational
evidence, and thereby limit the scope of what we can find out by observation. If there are such
limits, they must be inferred from observation; we must not assert them.” (Jeffreys 1961)
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art of establishing certain types of models of nature itself.14 In the present
section we focus however on the former two aspects: inference and criticism.

Several ‘schools’ of statistics exist. These are often put in the two opposing
camps of Bayesians and frequentists, with sometimes a third camp of Fish-
erian likelihoodists included, but even with the latter extension, the classifi-
cation ignores many of the subtleties in the different positions practitioners
hold (in particular, it ignores the numerous scientists with a pragmatic “will
use whatever does the job” approach, and it ignores a perhaps even more im-
portant split, between those in favor of ‘null hypothesis significance testing’
(NHST) and those who believe NHST is fundamentally misguided). Our re-
marks on probability in the previous section, however, already appear to put
us in the Bayesian camp, and indeed, we defend a Bayesian approach towards
statistics. Both schools make use of probability and probabilistic models of
course, but they diverge in their view on just what the role of probability is in
making statistical inferences.

1.2.1 Frequentist and Bayesian statistical inference

Let us first briefly consider what has long been, and still is (but less so),
the dominant school of statistics (while remaining aware of our overly po-
larized classification). In the frequentist context, a parametric probabilistic
model (𝜃), with 𝜃 ∈ Ω a generic parameter, is assumed as a model for
some observed data set 𝑦 = (𝑦1, 𝑦2,… , 𝑦𝑛) ∈  . Typically the data are
assumed to be iid (independent and identically distributed) draws from ,
and the frequentist statistician imagines 𝑦 as a realization of a random vector
𝑌 = (𝑌1, 𝑌2,… , 𝑌𝑛) ∼iid (𝜃). Now we consider the situation where 𝜃 is
unknown, and the goal is to come up with an estimate of 𝜃 (or some function
thereof), call it �̂�, based on the observed data 𝑦. To come up with such an
estimate, the frequentist considers some function 𝑡∶ → Ω so that �̂� = 𝑡(𝑦)
and studies the behavior of Θ̂ = 𝑡(𝑌 ) as an estimator of 𝜃. Writing the prob-
ability density function for observed data 𝑦 as a function of the parameter
𝓁(𝜃, 𝑦) = 𝑝(𝑦|𝜃), an important example of an estimator is the maximum like-
lihood estimator (MLE) �̂� = argmax𝜃𝓁(𝜃, 𝑦). The probabilistic properties of
Θ̂ are then considered as informative about the statistical properties of the par-
ticular estimate �̂� as an estimate of 𝜃. Typical properties of interest, which

14Here we gloss over another aspect of statistics, that of (experimental) design. In the context
of phylogenetics and much of evolutionary biology in general, we do not have the luxury that we
can worry much about design (although the issues related to taxon sampling are arguably related
to design questions).
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one would like to keep as small as possible, are the bias and variance of the
estimator (Lehmann and Casella 2006; Efron and Hastie 2021).

For instance, considering a univariate model, if we happen to know that
ℙ{Θ̂ > 𝜃 + 𝑧} = 0.1, then we can say that, assuming 𝑦 is indeed a realization
of 𝑌 under the model , �̂� will exceed the true parameter value by more
than 𝑧 in 10% of the cases if this experiment were repeated. The latter is
the source of ‘frequency’ in frequentism: under the frequentist viewpoint
we are invited to think of 𝑦 as a realization of a random experiment which
could, theoretically, be repeated indefinitely. We assess the statistical
performance of some procedure, embodied by 𝑡, by considering how often it
would lead us to make certain errors (such as reporting an estimator which
exceeds the true value by more than 𝑧) if we were to repeat the experiment
and statistical procedure. Note, however, that many of the probabilistic
properties of an estimator that we might be interested in will depend on the
true value of 𝜃, as for instance in our example above, where we considered
the property Θ̂ > 𝜃+ 𝑧. This is a major source of difficulty, and mathematical
ingeniousness, in frequentist statistics.

Frequentist statistics is hence largely limited to making statements before hav-
ing observed any data, answering questions like: If we were to use this esti-
mator, what accuracy could we expect? If the hypothesis is true, how likely
is it that a random data set will lead us to reject it? (Jaynes 2003). The reason
for this is ultimately the reluctance to bring knowledge about parameters on
the same (probabilistic) footing as knowledge about the natural processes we
are seeking to model. There is, of course, much more to frequentist statistical
practice. In particular we gloss over the many important differences within
that practice. As far as inference is concerned, however, this short discussion
will suffice for our purposes of comparing the two main approaches towards
statistics.

The Bayesian approach, originated by Thomas Bayes and Pierre-Simon
Laplace, is characterized by a more straightforward use of probability to
make inferential statements (and decide on acts15). Under the Bayesian
conception, probability serves as a quantitative measure of uncertainty about
some proposition, such as the proposition ‘𝜃 ∈ [0, 1]’. The initial task of

15Many works on Bayesian statistics motivate the Bayesian approach explicitly in a decision
theoretic context (e.g. Savage 1972; Robert 2007; Bernardo and Smith 2009). Bernardo and Smith
(2009) show clearly how reporting a posterior probability distribution or uncertainty interval can
be seen as a special case of deciding on an act in the face of uncertainty. We shall have no use
for decision theory in the present work however, and will not make explicit the loss functions we
use implicitly when reporting some Bayes estimator.
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a Bayesian statistician is to come up with a joint probability model for the
data 𝑦 and parameter 𝜃 with distribution 𝑝(𝑦, 𝜃), which formally connects the
observations to the unknowns. Elementary probability theory implies that
𝑝(𝑦, 𝜃) = 𝑝(𝑦|𝜃)𝑝(𝜃), so that the construction of a joint probability model
decomposes in an encoding of our state of knowledge about the parameter 𝜃,
marginalized over possible data, i.e. the prior distribution 𝑝(𝜃), and a choice
of sampling distribution 𝑝(𝑦|𝜃).16 By Bayes’ theorem, we can quantify our
state of uncertainty about the parameter conditional on having observed data
𝑦 by evaluating the posterior distribution

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

∝ 𝑝(𝑦|𝜃)𝑝(𝜃)
Using the posterior distribution, we can compute the posterior probability of
propositions of interest tomake inferential statements. For instance, for 𝜃 ∈ ℝ,
we can compute the posterior probability for a proposition like ‘𝜃 ∈ [0, 1]’ as
ℙ{𝜃 ∈ [0, 1]|𝑦} = ∫ 1

0 𝑝(𝜃|𝑦)𝑑𝜃. Such a posterior probability expresses the
post-data degree of belief we should have that the statement is in fact true, if
we assume the joint probability model 𝑝(𝑦, 𝜃) to be adequate17.

Clearly, what the Bayesian and frequentist approaches have in common is their
assumption of a probabilistic model for the data-generating process. The lat-
ter will typically be the same either in a Bayesian or frequentist analysis. The
main difference between the two approaches is really in the conception of
just what the role of probability in statistics is. For the frequentist, probability
measures something about a random process, typically a limiting frequency of
some event in an infinite number of repeated trials. This is a measure for some-
thing which is supposed to be random independent of any state of knowledge.
The data are modeled as if they were the product of some random process(𝜃) (e.g. a CTMCmodel of sequence evolution), and probabilities only ‘ex-
ist’ within the confines of such a random process. Clearly, the parameter 𝜃
is not random in any such sense, and it would make no sense to model it as
such, since it is supposed to have a definite value which could not have turned
out otherwise. Hence, it makes no sense, under a frequency conception of
probability, to assign a probability distribution to it.

16We follow the abuse of notation adopted (for instance) in Gelman et al. (2013) where all
distribution functions that appear in some Bayesian inference problem are symbolized by 𝑝(⋅)
and 𝑝(⋅|⋅). Different 𝑝 symbols may therefore reflect different distribution functions in the same
expression. We use the same notation for discrete and continuous random variables.

17This already points towards an approach for assessing whether our models are adequate: if
our actual degree of belief for some statement does not correspond to what Bayes’ theorem tells
us it should be, this signals issues with the model (or a calculation error).
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For many a Bayesian (including your present author), the idea of random-
ness independent of a state of knowledge fails to be intelligible, and would
bear on philosophical and physical problems far beyond the usual scope we
attribute to statistics.18 However, if probability is indeed considered a quan-
titative measure of ‘reasonable degree of belief’, it makes perfect sense to
encode our knowledge about 𝜃 in a probability distribution, and once we have
done so, Bayes’ theorem, or the principle of inverse probability as it is some-
times called, provides us with a principled approach to exhibit just how our
knowledge about 𝜃 changes in light of the data. Note that, contrary to what is
sometimes claimed, the Bayesian does not somehow assume that there is no
true value of 𝜃 and that 𝜃 itself is somehow random. This conflates the fre-
quentist conception of probability with the Bayesian, i.e. it conflates our state
of knowledge about 𝜃, expressed as a probability measure on a suitable space,
with 𝜃 itself.

For us then, frequentist statistical approaches often appear reasonable, but we
have no real use for them. Indeed, since our aim is to quantify our post-data
uncertainty about some unknown quantity in the form of a probability distribu-
tion over the space of possible values for that quantity, the way to get there is
by assuming a joint probability model for all the unknowns and the data, and
rely on conditional probability to obtain the posterior for the quantity of inter-
est. As we noted above, the joint probability model decomposes in a sampling
distribution and prior distribution, the former of which is typically shared with
a frequentist take on the same problem. Criticism of the Bayesian approach
hence focuses on the latter, i.e. the prior distribution. In particular, an of-
ten repeated reproach is that the prior would somehow be ‘subjective’, and
hence ruin our aspirations towards an ‘objective’ statistical analysis. We re-
gard this as a rather misguided criticism, in that the whole statistical endeavor
is about ‘subjective’ models which are used to probe the external world and
make sense of empirical data. More concretely, in typical applications, the
sampling distribution is at least as suspect as the prior regarding the perceived
issues with ‘objectivity.’19 The choice of the prior distribution is no less a
modeling question than the choice of sampling distribution, and it is part of
the statistical scientist’s modeling effort to specify just what, if anything, it is
we are ready to assume concerning the unknown quantitaties that feature in
the model. Furthermore, many non-Bayesian methods, can be interpreted as
Bayesian methods with some implicitly assumed prior.

18In the words of de Finetti: “probability does not exist” (de Finetti 1974).
19“It is perhaps merely an accident of history that skeptics and subjectivists alike strain on the

gnat of the prior distribution while swallowing the camel that is the likelihood.” (Gelman and
Robert 2013)
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1.2.2 Bayesian inference in practice

The ultimate merit of Bayesianism is that it provides a simple method (in the-
ory) for statistical inference, enabled by its endorsement of an epistemic con-
cept of probability. Indeed, the statistical challenge, from a Bayesian point
of view, lies not so much in the problem of inference, which is dealt with
automatically and does not require ad hoc devices as in frequentism. By an-
swering scientific questions directly (as opposed to giving answers involving
hypothetical repeated experiments) and providing an automatic method to do
so, Bayesianism gives statistics back to the scientist, allowing one to focus on
the models and their adequacy to the data. In practice, however, the automatic
inference method provided by Bayes’ theorem often presents a considerable
computational challenge, which, historically, presented a serious problem for
successful application of Bayesian methods to all but a handful of trivial prob-
lems.

Today, powerful algorithms and computers enable practical applications of
Bayesian inference to complicated problems (see Appendix A for an overview
of relevant methods for the present work). The solution of an inference prob-
lem for a praticingBayesian typically consists of a sample of𝑁 points from the
posterior distribution, which can then be employed for approximating expec-
tations with respect to the posterior distribution using Monte Carlo methods.
For instance, let 𝜃(1), 𝜃(2),… , 𝜃(𝑁) be a sample from the posterior distribution
𝑝(𝜃|𝑦), with 𝜃(𝑖) ∈ ℝ, the posterior mean value of 𝜃 can be approximated by

𝔼[𝜃|𝑦] = ∫ 𝜃𝑝(𝜃|𝑦)𝑑𝜃 ≈ 1
𝑁

𝑁∑
𝑖=1

𝜃(𝑖)

Probability is of course equivalent to the expectation of an indicator, so that
posterior probabilities about certain inferential statements, for instance that 𝜃
lies in some set 𝐴 ⊆ ℝ, can be derived in the same way, e.g.

ℙ{𝜃 ∈ 𝐴|𝑦} = 𝔼[𝟙𝐴(𝜃)|𝑦] ≈ 1
𝑁

𝑁∑
𝑖=1

𝟙𝐴(𝜃(𝑖))

We illustrate the problem of statistical inference for a parametric model by
reconsidering our CTMC model of sequence evolution.

Example (distance estimation). Consider two homologous DNA sequences
of equal length 𝑁 = 50, aligned in a data matrix 𝑦 so that homologous char-
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Figure 1.3: Prior and posterior distributions for the distance 𝜃 = 3𝜆𝑡 under the Jukes &
Cantor model with 𝑘 = 15 different sites for a pairwise sequence alignment of length
𝑁 = 50. 𝑝(𝜃) is the exponential prior with mean 0.3, 𝑝(𝜃|𝑘) shows a sample from the
posterior for the model with the exponential prior and 𝑝′(𝜃|𝑘) shows the posterior for
a model with an improper prior for log 𝜃. For references to color in figures, we refer
the reader to the digital version of this dissertation.

acters appear in the same column of 𝑦:

𝑦 =
[
AGACTTGAATCATCTTGTGGTATAGGTCGTGGTGCCGAGTGGTCCCTAGC
AGACTTGGCGGGACTTGCACTATAGGTCGTGGTGCGCGATACTCCCTAGC

]
We assume the Jukes & Cantor model of sequence evolution (see above) and
aim to estimate its parameter based on the observed sequence data. To do so,
we shall need the relevant sampling distribution. One can show (see e.g. Yang
(2006)) that the transition probability matrix has the following closed form

𝑃 (𝑡) =

⎡⎢⎢⎢⎣
𝑝0(𝑡) 𝑝1(𝑡) 𝑝1(𝑡) 𝑝1(𝑡)
𝑝1(𝑡) 𝑝0(𝑡) 𝑝1(𝑡) 𝑝1(𝑡)
𝑝1(𝑡) 𝑝1(𝑡) 𝑝0(𝑡) 𝑝1(𝑡)
𝑝1(𝑡) 𝑝1(𝑡) 𝑝1(𝑡) 𝑝0(𝑡)

⎤⎥⎥⎥⎦ where
𝑝0(𝑡) =

1
4 +

3
4𝑒

−4𝜆𝑡

𝑝1(𝑡) =
1
4 −

1
4𝑒

−4𝜆𝑡

Where the non-diagonal elements of the rate matrix 𝑄 are all equal to 𝜆. The
expected number of substitutions at a site over a time 𝑡 is equal to 𝜃 = 3𝜆𝑡
under this model. The latter quantity, which involves a product of a substitu-
tion rate and time interval, is, by physical analogy, usually called a molecular
distance, and serves as an alternative parameter for the model. The reversibil-
ity of the process entails further that the probability of observing this pair of
sequences is the same whether one considers them to have diverged from a
common (unknown) ancestral sequence a time 𝑡∕2 in the past or when one
assumes the one to be the ancestor at a time 𝑡 in the past of the other.
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Let 𝑘 = 15 be the number of observed differences between the two sequences.
Our goal will be to estimate the expected number of substitutions per site
𝜃 = 3𝜆𝑡 given 𝑘 observed differences. From the symmetry of the JC model,
it is easy to see that 𝑘 is a sufficient statistic for the model, that is, 𝑝(𝑦|𝑘)
is independent of 𝜃, so that 𝑝(𝑦, 𝑘|𝜃) = 𝑝(𝑦|𝑘)𝑝(𝑘|𝜃) ∝ 𝑝(𝑘|𝜃). To conduct
inference, we hence only need the sampling distribution for 𝑘. The latter can
be straightforwardly obtained from the transition probabilities of the JCmodel

𝑝(𝑘|𝜃) ∝ (
1
4
+ 3

4
𝑒−4𝜃∕3

)𝑁−𝑘(1
4
− 1

4
𝑒−4𝜃∕3

)𝑘

The posterior distribution for the distance is then 𝑝(𝜃|𝑘) ∝ 𝑝(𝑘|𝜃)𝑝(𝜃). Let
us assume an exponential prior density 𝑝(𝜃) with mean 0.3. A sample of size
10000 from the posterior distribution then provides a posterior mean estimate
for the expected number of substitutions per site of �̂� = 0.38 (MCSE < 0.01)
with 95% posterior uncertainty interval of (0.21, 0.62). This means that, after
having oberving the data, we assign 95% probability mass to the statement
𝜃 ∈ (0.21, 0.62), or, in other words, we are ‘pretty sure’ (or ‘quite confident’)
that 𝜃 ∈ (0.21, 0.62), assuming the model.20 When using an improper prior,
𝑝(log 𝜃) ∝ 1, the posterior is almost indistinguishable from the analysis with
an exponential prior distribution (fig. 1.3). For comparison, theMLE is �̂�ML =
− 3

4 log
(
1 − 4

3
𝑘
𝑁

)
= 0.38. □

Note that our choice for the prior distribution in the above problem was some-
what arbitrary. We know 𝜃 is positive, and that it should not be too far from
the observed proportion of different sites 𝑘∕𝑁 , but besides that, we have no
compelling reasons to select a particular prior distribution. However, in the
above example, choosing two different priors compatible with the little prior
information we have does not affect our posterior inferences substantially, so it
would be silly to concentrate our criticism on the prior assumptions while the
sampling distribution (JC model) is a much more substantial, and potentially
problematic, modeling assumption in this case.

20Note that the expected number of substitutions per site for a particular data set with a propor-
tion 𝑘∕𝑁 of different sites, which we could write as 𝔼[𝜃𝑦], is necessarily larger than 𝑘∕𝑁 . The
𝜃 parameter we estimate here, however, reflects the expected number of substitutions per site for
a random sequence simulated from the CTMC model, of which our observed data is (granted the
modeling assumption) but one example.
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1.2.3 Statistical criticism

As Rubin put it, “Bayesian” is an approach for making statistical infer-
ences, “Frequentist” is an approach for evaluating statistical inferences.”

– Andrew Gelman

Statistics is about more than inference, which corresponds merely to its de-
ductive aspect. Indeed, conditional on an assumed model, we use the logic of
conditional probability to arrive at posterior inferences (and we can use the
whole of mathematical probability theory, and many of the frequentist’s re-
sults, to help us in this) – and that’s it as far as inference is concerned. This
procedure does not, however, tell us anything about whether our model as-
sumptions are in fact reasonable. When we are analyzing time series data for
a falling object using a linear model, there is nothing in Bayes’ theorem that
will tell us we are being silly. Bayesian inference alone cannot tell us any-
thing about the model, but is restricted to answering questions conditional on
the model. The model is the constraint which makes inference possible.

One can, of course, always try to embed the assumed model in a bigger model.
For instance, in the sequence evolution example, wemay consider two rivaling
models: the JC model 1 and the K80 model 2. If we succeed in assign-
ing prior probabilities to the two models, Bayesian inference for the posterior
probability of either model is straightforward in principle

𝑝(1|𝑦) = 𝑝(𝑦|1)𝑝(1)
𝑝(𝑦|1)𝑝(1) + 𝑝(𝑦|2)𝑝(2)

If we regard the two models as forming a ‘null hypothesis’ – ‘alternative hy-
pothesis’ pair, one can use the Bayes factor as a device for doing a sort of
Bayesian hypothesis test. The posterior odds in favor of 2 is

𝑝(2|𝑦)
𝑝(1|𝑦) = 𝑝(𝑦|2)

𝑝(𝑦|1)
𝑝(2)
𝑝(1)

where 𝑝(𝑦|2)∕𝑝(𝑦|1) is the Bayes factor in favor of2. The Bayes factor
measures the amount of evidence the data bears on a hypothesis , i.e. it is the
factor which transforms the prior odds into the posterior odds (Jeffreys 1961;
Kass and Raftery 1995; Jaynes 2003).

However, this bigger model hardly solves our problem. Indeed, by comparing
two models, we have learned nothing about how adequate either is as a model
for the observed data. By evaluating posterior model probabilities, we do not
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assess the adequacy of either model for the data, but only their relative ade-
quacy. In addition, it is not straightforward to interpret 𝑝(𝑖) and 𝑝(𝑖|𝑦),
the latter having an interpretation as the posterior probability that 𝑖 is the
true data-generating model conditional on the assumption that either one of
the models is indeed the true model. Now, Box’s famous aphorism in mind,
we do not usually like to think of our models as true or false when assessing
their adequacy, as they are usually deliberate simplifications of a (hypotheti-
cal) more complicated model for the natural system under study. The Bayes
factor has similar issues, not measuring the evidence for a certain model in
the data as such, but measuring the evidence for a model relative to another
conditional on the bigger model. Of course, this is only to be expected, and
to lament this would only highlight how vain we were in thinking it possible
to assess the probability or evidence for a model without reference to an alter-
native. There is no such thing as an unconditioned inference21. A well-posed
question is necessarily conditional on an assumed model.

However, the posterior distribution within a model provides other possibilities
for garding us against misleading inferences for nonsense models. Essentially,
what we want is to assess the fit of our models to the data in a more direct way,
evaluating whether the data, or various aspects thereof, are actually plausible
to be observed under the assumed model. The key to do so in the Bayesian
framework is prediction. Specifically, we can use the posterior predictive dis-
tribution

𝑝(�̃�|𝑦) = ∫ 𝑝(�̃�|𝜃)𝑝(𝜃|𝑦)𝑑𝜃
which represents our uncertainty when predicting the value for new or unob-
served (but potentially observed) data �̃� under the model after having observed
data 𝑦. In particular, if the model adequately fits the data, we expect that data
sets simulated from the posterior predictive distribution resemble our actually
observed data 𝑦. That is, we ask a question of the form: Given our current
state of knowledge about the model, represented by the posterior 𝑝(𝜃|𝑦), how
surprised would we be to see the data set 𝑦 we did in fact observe? To ex-
press this in somewhat frequentist verbiage, we ask ourselves: If we were to
observe an ensemble of data sets from the assumed data-generating process
with values of 𝜃 in accordance with our current (Bayesian) state of knowledge
about 𝜃, how likely is it to see something which resembles 𝑦? This provides
us with a powerful strategy to use Bayesian inference to signal issues with
our models, indeed, we can use the predictive distribution under the model to

21While this is likely to be stressed in some way in many a statistical work, nowhere is this
point articulated with more force than in Jaynes (2003) (see in particular chapter 5).
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point towards problems with the model, without having to step outside of it
and embed it in a bigger one.

To actually assess these questions, we need to be specific about what we wish
to mean when we say a simulated data set �̃� ‘resembles’ 𝑦. Two main strate-
gies are usually advocated, using either test quantities and posterior predictive
𝑝-values or graphical comparisons (Gelman et al. 2013). For the former, one
identifies a certain statistic of the data, 𝑇 (𝑦), and compares the value of 𝑇 (𝑦)
to the posterior predictive distribution of 𝑇 (�̃�), for instance by reporting an
estimate of the posterior predictive 𝑝-value ℙ{𝑇 (�̃�) > 𝑇 (𝑦)|𝑦}. If we are
able to simulate ‘fake data sets’ like 𝑦 under the model, then, given a sample
𝜃(1),… , 𝜃(2) from 𝑝(𝜃|𝑦), we can generate a sample �̃�(1),… , �̃�(𝑛) from 𝑝(�̃�|𝑦),
and estimate the posterior predictive 𝑝-value using Monte Carlo. If 𝑇 is cho-
sen so that a larger 𝑇 (𝑦) is less likely under the model (i.e. suggests a poor fit),
than a small posterior predictive 𝑝-value indicates that the model provides a
poor fit to that aspect of the data captured by the statistic 𝑇 . The principle of
graphical posterior predictive checks is of course really the same, but relies on
a graphical display of certain features of 𝑦 along replicate data sets simulated
from the posterior predictive distribution. The latter may be more suggestive
of what, if anything, is wrong with the model, rather than merely suggesting
that something is wrong. We illustrate this important pillar of Bayesian statis-
tical analysis by reconsidering the sequence evolution problem.

Example (distance estimation, continued) We investigate the fit of the JC
model for the data set considered in the previous example using posterior pre-
dictive simulations. An obvious test quantity to assess the fit of the model to
the data would be the observed number of different sites in pairwise sequence
alignments simulated from the model. However, since this is a sufficient statis-
tic for the model (see above) this will be unable to display potential discrep-
ancies with the observed data set (Gelman et al. 2013, chap. 6). Indeed, we
estimate a posterior predictive 𝑝-value for this statistic of 0.49, which suggests
that this aspect of the data is perfectly captured by the model (the estimated
posterior mean number of different sites is 14.7, and the 95% uncertainty in-
terval for the number of observed differences is (7, 24)).

A more interesting test quantity would consider the site pattern frequencies.
There are six different site patterns (AC, AG, AT, CG, CT and GT), each of which
are equally probable under the JC model. The observed site pattern frequen-
cies in the data are 𝑇 (𝑦) = (0.07, 0.40, 0.07, 0.33, 0.07, 0.07) (in the lexico-
graphical order also used above). This already suggests some discrepancy
with the JC model, although we can not, simply by looking at these values,



27

AC
AGAT

CG

CT
GT

Figure 1.4: Posterior predictive distributions for site pattern frequencies and the en-
tropy of the site pattern distribution for the JC model (based on 10000 data sets sim-
ulate from 𝑝(�̃�|𝑦)). Vertical dotted lines mark the values for the relevant quantities
associated with the observed data 𝑦.

know whether this is significantly different from the JC prediction. A poten-
tially interesting test statistic would be the entropy of the site pattern distribu-
tion (−

∑6
𝑖=1 𝑓𝑖 log 𝑓𝑖 where 𝑓𝑖 is the frequency of pattern 𝑖), as the JC model

induces the maximum entropy distribution (a uniform distribution) over site
patterns and is thus a possibly significant modeling assumption. Posterior pre-
dictive simulations indicate that the entropy for the observed site patterns is
somewhat low but not all that surprising (fig. 1.4), with a posterior predictive
𝑝-value of 0.16. Posterior predictive site pattern frequencies further suggest
that the frequency of the AG pattern is somewhat higher than expected under
the model (𝑝 = 0.02).

While the JC model appears to fit the data reasonably well from the perspec-
tive of the site pattern frequencies, we consider an alternative model which
does not, in general, predict a uniform site pattern distribution. In partic-
ular, we assess the K80 model, which has two parameters: the distance 𝑑
(expected number of substitutions per site) and the transition to transversion
ratio (or bias) 𝜅, where 𝜅 = 1 reduces the K80 model to the JC model. Us-
ing the same exponential prior for the distance 𝑑 and an exponential prior
distribution with mean 1 for 𝜅, we estimate the posterior mean distance for
the K80 model at �̂� = 0.39 with 95% uncertainty interval (0.21, 0.62), which
is the same as for the JC model. For 𝜅, we estimate the marginal posterior
mean at �̂� = 1.64 (0.41, 3.82). Clearly, there is considerable uncertainty
about the value of the latter parameter. While suggestive of a transition bias
𝜅 > 1, the posterior under the K80 model is compatible with the JC model
(𝜅 = 1). The probability of the observed site pattern frequency for AG is, as
expected, now higher (fig. 1.5 (A)). The marginal likelihood for the JC model
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Figure 1.5: (A) Posterior predictive simulation of site pattern frequencies for the K80
(two-parameter) model (see fig. 1.4). Posterior predictive site pattern distributions are
shown using a Gaussian kernel density estimate (KDE) for visual clarity. (B) Posterior
predictive distribution for the number of switches between invariant sites and sites with
an observed substitution for the JCmodel (the prediction for the K80model is of course
the same). The dotted vertical line marks the observed number of switches for data 𝑦.

is 𝑝(𝑦|1) = ∫ 𝑝(𝑦|𝜃)𝑝(𝜃)𝑑𝜃 which we can compute using numerical quadra-
ture, giving log 𝑝(𝑦|1) = −48.4. Similarly, the marginal likelihood for the
K2P model is computed as 𝑝(𝑦|2) = ∬ 𝑝(𝑦|𝜃, 𝜅)𝑝(𝜃)𝑝(𝜅)𝑑𝜃𝑑𝜅, which on
a log-scale amounts to −48.8. The Bayes factor ‘in favor’ of 2 is 0.7, and
hence suggests there is no reason for favoring the two-parameter model.

An important assumption in both CTMC models we considered so far is in-
dependent evolution across sites. Indeed, we have been assuming that differ-
ent columns in the pairwise alignment are iid realizations of the evolutionary
model. A closer look at the data suggests that this assumption might be vio-
lated, consider the following display:

𝑦 =
[
.......AATCAT....TGG...............CGAG.GG........
.......GCGGGA....CAC...............GCGA.AC........

]
where we have represented invariant sites by a ‘.’ character. We assess
whether this is expected under the JC model by simulating alignments from
the posterior predictive distribution and computing as a test quantity the num-
ber of times we switch from an invariant site to an observed difference moving
along the alignment from left to right. We find that this is indeed a conspicuous
pattern under the model, with the posterior predictive probability of observing
a data set at least as extreme as 𝑦 under the model about 0.01. This suggests
that, if we wish to use a more realistic model, a reasonable avenue to explore
would be taking into account some form of context-dependence in the substi-
tution process (see e.g. Baele (2012)). A hidden Markov model would be an
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obvious first choice for expanding the model in that direction for the present
data set. □

In contrast to the frequentist question “What data would we expect under the
assumedmodel?”, Bayesian posterior predictive checks ask “What data would
we expect under the assumed model, given the data we did in fact observe?”.
The latter question addresses much more adequately whether we have any rea-
son to be surprised by the data under the assumed model and prior (Jaynes
2003). Clearly, whether or not we find problems with the model in this way
depends crucially on which aspects of the data we care about. There are usu-
ally many potentially interesting test quantities for a given data set and model,
and which ones we choose to evaluate should be motivated by which aspects
of the data for which we think model fit is important. Devising good probes
to critically assess model fit hence rests, like constructing models, ultimately
on imagination and sound scientific judgement. This is in contrast with the
‘automatic’ nature of Bayesian inference for a given model.

Lastly, we note that in the above example, the Bayes factor actually favors1,
despite 1 being a special case of 2. This is because the simpler model
makes more precise predictions, or conversely, the predictive distribution of
the more complicated model tends to be more spread out over the space of
possible data, so that the marginal likelihood 𝑝(𝑦|2) is lower. This natu-
ral penalty for ‘model complexity’ in Bayesian inference has been called a
‘Bayesian Occam’s Razor’ (MacKay 2003). Hence, when there are several
competing models which all fit the data reasonably well, a Bayesian model
selection procedure can be helpful to guard against issues of overfitting, when
the latter is a concern. However, Bayesian model selection, as we illustrated
above, is no substitute for checking model fit using the posterior predictive
distribution. Whereas the above analysis favors the JC model, posterior pre-
dictive checks suggest there is no harm in assuming the K80 model instead22.

1.2.4 Some concluding remarks about Bayesianism

We conclude this section by acknowledging our debt. The view on Bayesian
statistical analysis expounded above has been most strongly influenced by
Jaynes (2003) and Gelman et al. (2013); and to a lesser extent by MacKay

22[…] which was, as a matter of fact, used as the true data generating process for simulating
the data set in our toy example above (with 𝜅 = 1.8, and some additional autocorrelation in the
substitution process along the sequence).
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(2003) and Jeffreys (1961). In a nutshell, we are inclined to subscribe to the
viewpoint expressed in Gelman and Shalizi (2013):

[…] the hypothesized model makes certain probabilistic assumptions,
from which other probabilistic implications follow deductively. Simula-
tion works out what those implications are, and tests check whether the
data conform to them.

a viewpoint with which many a statistician, Bayesian or otherwise, will agree.
Our view on probability, which paves the way for a proper appreciation of
Bayesian statistical methods as the best way to bring this viewpoint into ac-
tion, has been shaped by Jaynes (2003), Savage (1972), de Finetti (1974) and
Jeffreys (1961). A core message in all of these authors is that probability is
not simply a branch of mathematics that scientists can safely ignore, as they
ignore topology or commutative algebra, but is really at the heart of the episte-
mology of science, quite independent of its mathematical formalization. We
wish this were more widely taught. Of course, there is, inevitably, some ide-
ology here too. We need ideas to guide practice, and the ideas coming from
the Bayesian corner strike us as compelling in that regard.

Perhaps most importantly, what Bayesianism allowed us to see clearly, is that
the main challenge in any statistical analysis lies not so much in its statistical
aspects proper, but rather in the challenge of devising good models. Indeed,
Bayesian statistics (with modern computational tools) is extremely powerful
in practice, allowing us to conduct statistical inference for models never imag-
ined by R. A. Fisher or other towering figures of the classical school. With
the constraints on the types of models we can analyze gradually eroding, we
are confronted (again) with the fact that it is really the science which is the
hard thing, not the statistics. The creative endeavor which is the devising of
theories and construction of formal models of nature is what limits our ability
to make sense of empirical data, not our logical means to confront these two
heterogeneous realms with each other.23

1.3 Genome evolution

Having established our broader goals and methodological commitments, we
shall now seek to circumscribe our subject area, genomic diversity and the

23Although computational means remain limiting as well, despite the tremendous advances of
the last decade. The creative challenge of devising good approximations hence remains of crucial
importance as well.
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Figure 1.6: From tissue to genome sequence. Intricate chemical technology allows
the determination of the sequence of base pairs in minute quantities of matter isolated
from organic tissues. Here pictured is Oxford Nanopore’s GridION.

evolutionary processes which shape it, in more detail. Of course, we are not
the first to express a desire to study genomic data and genome evolution us-
ing statistical models of evolution, and in the present section we shall lay out
the conceptual foundations due to previous workers in the field on which we
build in this dissertation. As elsewhere in science, our object is not a simple
given, but is constituted in a somewhat contingent way which may escape our
criticism. In particular, as we have already noted above, the way in which we
gather data conditions how we imagine our object of study, and vice versa.
Clearly, how we conceive of a ‘genome’ in practice determines which aspects
of genomic diversity we actually observe and shall seek to account for using
our models. We shall hence first dedicate some attention to those concepts
and abstractions we allow to structure our models.

1.3.1 Genomes as bags of genes

Of what consists the ‘genomic data’ and ‘genomic diversity’ we have been
talking about in the first part of this chapter? Being bioinformaticians, when
we refer to a ‘genome’ and ‘genomic data’, we are essentially referring to dig-
ital text files, which store the putative sequences of bases of a collection of
DNAmolecules isolated from some tissue material. The technological details
of this process are staggering, but a rough sketch of the standard pipeline is
shown in fig. 1.6. It should be held in mind that the end stage of these sophis-
ticated manipulations is a rather long shot from the usual genetic definition of
a genome as “all genetic information of an organism”. Even if we grant the
uncritical identification of “genetic information” with the sequence of base
pairs in a collection of chromosomes, the usual bioinformatic conception of a
genome, which we shall assume throughout the present work, ignores many
potentially genetically relevant aspects thereof. Not only are modifications of
the DNA and spatial features beyond the linear topology of eukaryotic chro-
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Figure 1.7: (A) The bioinformatic conception of an annotated genome. Protein-coding
genes are shown as rectangles with a point showing whether the coding sequence is
on the sense or antisense strand. (B) Associated gene list, ignoring both directionality
and anchor points of the genes along the genomic sequence, retaining only gene order.
Each dot represents a gene, whereas the colors represent homology relationships. (C)
‘Bag-of-genes’ associated with (A) and (B).

Prasinoderma coloniale Homo sapiens 
Amaranthus hybridus 

Aquilegia oxysepala 
Prunus persica 

Carica papaya 
Cardamine hirsuta 

Selenicereus undatus 
Petunia axillaris 

Chara braunii 
Gossypium raimondii 

Actinidia chinensis 
Solanum pennellii 

Olea europaea 
Arachis hypogaea 

Brassica napus 

Figure 1.8: Number of protein-coding genes in the 100 genomes included in the
PLAZA 5.0 database (Van Bel et al. 2022), and Homo sapiens. Species names are
shown for several representative taxa.

mosomes ignored, we also ignore heterogeneity in the genetic material within
an individual organism. In the present work, and most of evolutionary and
comparative genomics, we go even further and shall mostly ignore the hetero-
geneity within a population (but see chapter 5), and speak without further re-
straint of the human genome, the Arabidopsis genome, whereas clearly, what
we actually study in evolutionary genomics is, at best, a specimen with respect
to the latter.

A next fateful step is the identification of ‘genes’ along these genome se-
quences. The concept of gene being a rather murky one, this is of course
another source of conceptual difficulties and hard choices. In evolutionary
genomics, the term ‘gene’ is usually employed to refer to a class of relatively
stable and independent DNA segments that can be identified on the basis of
certain structural properties (clearly, a rather long shot from the Mendelian
factor), mainly DNA sequences which code for the usual biological macro-
molecules (proteins, tRNAs, rRNAs, miRNAs, and the rest of the RNA zoo).
Protein-coding DNA sequences, which are relatively straightforward to iden-
tify, make up one such class, and they shall be the primary objects of study in
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Figure 1.9: Scatter plot representation of the gene homology matrices (see main text)
for all pairwise comparisons among the genomes of Vitis and two Drosera species.
Gray and black lines separate chromosomes and genomes respectively.

this thesis, in that we shall base our study of genome evolution on what hap-
pens in this class. The bioinformatic identification of protein-coding genes
is the result of a complicated pipeline, of which we shall be ignoring the
specifics throughout the present work, assuming we have the collection of
protein-coding sequences for a given genome sequence available.

What we end up with after applying our bioinformatic pipeline (i.e. the end
result of a ‘genome project’), and shall call a genome, is a collection of DNA
sequences with a class of elements called genes anchored along them (fig. 1.7
A). Comparing these genomes reveals a rather dazzling amount of variation
that demands evolutionary study. For one, the number of protein-coding genes
varies considerably across genomes, as one can grasp from a glance at fig. 1.8.
The absence of a broad correlation between the number of protein-coding
genes and perceived ‘organismal complexity’ is generally considered as strik-
ing in this regard (referred to as the G-value paradox, see e.g. Hahn and Wray
(2002)). What causes this variation? Which evolutionary processes can gen-
erate such patterns of diversity? At what rates must these processes operate in
order to yield patterns that match the observed data? These types of questions
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animate evolutionary genomics and the present work. If we further succeed
in identifying homologous genes, we can conduct more detailed comparisons,
as for instance displayed in fig. 1.9, where we show gene homology matrices
for pairwise genome comparisons. In this representation, each genome is rep-
resented along the 𝑥- and 𝑦-axis as a collection of strings of genes, or gene
lists (fig. 1.7 B), and a dot at coordinate (𝑖, 𝑗) in the matrix represents a homol-
ogy relationship between the 𝑖th gene along the 𝑥-axis and 𝑗th gene along the
𝑦-axis. Such a simple representation reveals a lot of variation whose structure
is determined by evolutionary processes.

Clearly, the gene list view of fig. 1.7 (B) and fig. 1.9 is an abstraction which
permits potentially insightful comparisons of genomes and opens up avenues
for devising models of evolution which could enable us to unlock some of the
information in genomic data about the evolutionary process and reconstruct
plausible evolutionary histories. In most of our work, however, we will go
even further in our abstraction of a genome and discard the information of
where each gene is located along the genome, so that a genome is simply con-
sidered as a set of genes. This is sometimes called the bag of genes model of
a genome (Huynen and Bork 1998) (fig. 1.7 C). To see what sort of evolution-
arily relevant structure such a bag can have, we need to go a bit deeper into
the various ways in which genes can be homologous to each other.

1.3.2 Gene families

Biologists should realize that before long we shall have a subject which
might be called ‘protein taxonomy’ – the study of the amino acid se-
quences of the proteins of an organism and the comparison of them be-
tween species. It can be argued that these sequences are the most deli-
cate expression possible of the phenotype of an organism and that vast
amounts of evolutionary information may be hidden away within them.

– Francis Crick (1958)

Francis Crick, as astute and prescient as ever, was of course right in his pre-
diction. Indeed, as the previous sections already suggest, much of this thesis
is concerned with the development of statistical methods for unveiling some
of the evolutionary information hidden away in protein sequences, in order to
learn about the processes which shape genome evolution and reconstruct evo-
lutionary histories. Crick’s ‘protein taxonomy’ can be identified with what
we nowadays would call the study of gene families and their evolution, which
constitute the basic evolutionary units in the ‘bag of genes’ conception of a
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genome, much in the same way as we have treated sites in our sequence evo-
lution examples above.

A gene family, for us, is a set of homologous genes, that is, a set of genes
which derive from some common ancestral gene.24 Now, if by ‘descend’ we
mean ‘derived from a template-based copy of a stretch of DNA’, then, pre-
sumably, most genes in extant genomes descend from a handful of ancient
genes, and we are left with a rather useless concept. To appreciate the con-
cept of gene family as it features in the present work, consider a collection of
genomes 𝐺 = {𝐺1, 𝐺2,… , 𝐺𝑛}, and assume their evolutionary relationships
are adequately represented by a phylogenetic tree. To fix ideas, consider the
three-taxon phylogeny depicted in fig. 1.10. This phylogenetic tree will be
habitually referred to as the species tree, as a consequence of the common
situation where the genome collection consists of genomes from distinct taxo-
nomic species. In the latter case, bifurcations in the species tree are supposed
to represent speciation ‘events’25. In fig. 1.10, we see that the most recent
common ancestor (MRCA) of the genomes in our collection is represented
by an (unobserved) ancestral genome 𝐺5. Concomitantly, if we now consider
each genome as a ‘bag of genes’, so that 𝐺𝑗 is identified with a set of genes
{𝑔𝑗1, 𝑔𝑗2,… , 𝑔𝑗,𝑁𝑗

}, we see that, barring de novo origin of genes, each gene
traces back to a common ancestral gene in 𝐺5. A set of genes from 𝐺 which
trace back to a single common ancestral gene in the MRCA of 𝐺 is referred
to as an orthogroup, several examples of which are shown in fig. 1.10. In the
present work, we shall identify the term ‘gene family’ with orthogroup.

A little more needs to be said about the term orthogroup, which is itself de-
rived from ortholog (or sometimes orthologue), a concept due to Fitch (1970).
Orthology is a particular kind of pairwise homology relationship. Two genes
from distinct genomes are said to be orthologous if they derive from a com-
mon ancestral gene in the MRCA of their respective genomes. We can further
broaden the concept by saying that two genes are orthologous with respect to
ancestral genome if they derive from a common ancestral gene in (which
need not be the MRCA of the relevant genomes). An orthogroup for a collec-
tion of genomes 𝐺 is then a collection of genes where all between-genome

24Note that in molecular biology and more ‘functionally’ oriented fields in genomics, a gene
family is sometimes defined using criteria such as having a similar biological function or sharing a
particular molecular feature like a protein domain. Of course, due to evolution, such gene families
will not be unrelated to ours.

25Speciation is hardly an ‘event’ but rather a, typically gradual, process. On long time scales
however, it is convenient to think of speciation as an essentially instantaneous event, like a mu-
tation. This collapsing of extended processes into discrete events is a common occurrence in
phylogenetics.
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𝐺1 𝐺2 𝐺3

𝐺4
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𝑔51 𝑔52(A) (B)

Figure 1.10: (A) Species tree (in gray) for three extant genomes 𝐺1, 𝐺2 and 𝐺3.
Orthogroups {𝑔11, 𝑔21, 𝑔31} and {𝑔12, 𝑔22, 𝑔32} are shown embedded in the tree with
ancestor-descendant relationships between genes marked by a directed edge. (B) As in
(A) but showing different orthology relationships among the set of genes (with extant
orthogroups {𝑔11, 𝑔12, 𝑔21, 𝑔22, 𝑔31} and {𝑔32}). Here 𝑔11 and 𝑔12, for instance, are par-
alogous, whereas 𝑔11 and 𝑔22 are paralogous with respect to 𝐺4, but orthologous with
respect to 𝐺5.

pairs of genes are orthologous with respect to the MRCA of 𝐺.

Now, homologous gene pairs do not only originate through divergence of their
respective genomes (i.e. speciation if we are considering species trees), but
also through duplication events, which create diverging gene pairs within a
single genome. For instance, in fig. 1.10 (B), the ancestral gene 𝑔51 has two
descendant genes in genome𝐺4 due to a gene duplication along the branch be-
tween𝐺4 and𝐺5. Pairs of genes which diverged through such within-genome
gene duplication events are said to be paralogous (Fitch 1970). In addition,
not all ancestral genes leave observed descendants in all genomes under study
due to gene loss, whereby a gene is removed from the set of protein-coding
genes. In fig. 1.10 (B) for instance, 𝑔52 does not leave any descendants in 𝐺4,
and consequentially, no descendants of this gene are observed in 𝐺1 and 𝐺2.

As a result of these processes (and others, see below), the evolutionary history
of a gene family is not simply determined by the evolutionary history of the
associated genomes (as in e.g. fig. 1.10 A), but is rather the result of an evo-
lutionary process distinct, but not independent, from the one generating the
genome-scale tree (Maddison 1997). The result is that there is considerable
variation in both the size of gene families across the genome and their phy-
logenetic histories. By studying the collection of gene families in a genome,
i.e. variation within and across bags of genes, we can learn about the key pro-
cesses that generate genomic diversity at this level of abstraction. To do so, we
shall need models of gene family evolution which explain how gene families
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evolve within their evolving host genomes.26

1.3.3 Models of gene family evolution

We introduced the concept of gene family as the sensible evolutionary unit
of analysis for studying genome evolution from the ‘bag of genes’ perspec-
tive, and we noted that multiple evolutionary processes lead to variation in
gene family evolutionary histories across the genome. In this penultimate sec-
tion, we provide a high-level overview of these sources of variation, what we
can learn from them, and how previous workers have sought to model them.
We will stick to an informal style, deferring detailed treatments to the more
technical chapters of this dissertation. We refer the reader to Szöllősi et al.
(2015) for an exceptionally exhaustive review on these matters. The recent
edited volume by Scornavacca, Delsuc, and Galtier (2020) is also helpful in
that regard.

1.3.3.1 Gene genealogies

The first source of variation in evolutionary histories across the genome is a
consequence of elementary population genetics. Looking back at fig. 1.10, we
realize that we have been grossly simplifying things, and that there is in fact
no such thing as the ancestral 𝐺5 genome, just like there is no such thing as
the human genome. Genes are passed on generation by generation from par-
ents to children, and not from species to descendant species. A set of genes
in a gene family will therefore trace back a genealogy or gene tree inside the

26A short note on practical inference of gene families is due. Clearly, the concept of gene
family is tied up with the processes which we seek to model, as what is or is not a proper gene
family depends on its evolutionary history. Indeed, we do not observe gene families, so we have
to infer them from the protein-coding sequences, ideally based on a model of evolution. The prob-
lem of gene family inference is essentially a clustering problem. In a Bayesian framework, it is
straightforward to formulate such a clustering problem with an arbitrary within-cluster probabilis-
tic model, so that in theory, one could infer gene families and their evolutionary histories jointly.
This is however computationally prohibitive, and as far as we are aware, unexplored terrain. In
practice then, we shall rely on a collection of gene families inferred by other, more or less heuristic,
means, and assume these as data, i.e. as known without error. We use OrthoFinder in the present
work (Emms andKelly 2019), which uses the common strategy of clustering a sequence similarity
graph into gene families using Markov clustering (Van Dongen 2000). As a compensation for our
heuristically inferred orthogroups, we shall typically depart from the strict assumption that our
‘observed’ gene families are derived from a single ancestral gene in the MRCA of the species tree,
but rather assume a small but unknown number of ancestral genes for each gene family, which
we shall model by a parametric distribution.
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Figure 1.11: Gene genealogies for two gene families within a species tree. We show
a model with a population of a constant size 𝑁 = 15 evolving in discrete non-
overlapping generations. Each dot represents an individual genome in a given gen-
eration in some population, reproductively isolated from the other contemporaneous
populations. The lines trace back the genealogy for two observed gene families. (A)
The genealogy for the first family is congruent with the species tree. (B) The genealogy
for the second family is incongruent with the species tree due to ILS.

set of populations represented by the species tree (fig. 1.11). Moreover, if the
latter involve sexually reproducing individuals, recombination and Mendelian
segregation will cause the gene genealogies to be different in general for dif-
ferent samples of genes. Not only do the simple consequences of Mendelian
inheritance lead to quantitative variation in the time since divergence for dif-
ferent orthologous genes across the genome, they can also lead to qualitatively
different phylogenetic tree topologies, a phenomenon referred to as deep coa-
lescence or incomplete lineages sorting (ILS), as illustrated in fig. 1.11 (B).

Clearly, in order to account for this source of variation one would have to
model the underlying population genetic processes. The usual strategy to do so
is to model the gene genealogies using coalescent processes, which describe
the ancestry for a sample of extant genes in a single population backwards in
time (Hein, Schierup, and Wiuf 2004). The key determinants of the extent of
this type of variation are demographic parameters 𝜙, in particular parameters
which are related to the population size. If we succeed in establishing a reason-
able model, one can use observed sequence data 𝑦1,… , 𝑦𝑛 for 𝑛 gene families
to learn about the species (population-level) tree 𝑆 and 𝜙 using hierarchical
models of the following form

1,… , 𝑛|𝑆, 𝜙 ∼ CoalescentModel(𝑆, 𝜙)
𝑦𝑖|𝑖, 𝜓𝑖 ∼ PhyloCTMC(𝑖, 𝜓𝑖)

Where PhyloCTMC( , 𝜙) represents a phylogenetic CTMC model with tree and parameter 𝜓 as defined in sec. 1.1.3. As we will see repeatedly, the
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Figure 1.12: (A) Evolution at the locus level, or locus tree, (black lines) within a species
tree (gray tree shape), with gene duplication and loss events. The black circle repre-
sents a gene duplication event, whereas the ⊣ arrowhead indicates a gene loss event.
(B) Locus tree within a species tree with gene loss, horizontal gene transfer and gene
conversion. The white circle indicates a transfer event, whereas the white square indi-
cates a gene conversion event.

model combines a genome-level model with with a family-level model. The
most common model along these lines is the multispecies coalescent (MSC)
model (Tajima 1983; Hudson 1983; Pamilo and Nei 1988; Rannala et al.
2020), which will be the focus of our chapter 5.

1.3.3.2 Locus-level events

The gene tree as we described it in the previous paragraph traces the evolu-
tionary history of a single gene locus in a collection of populations. However,
as we already noted above, new loci are created and lost throughout evolution,
leading to another source of evolutionary variation. Notably, these processes
lead to variation in gene copy number across gene families, which is the rule
rather than the exception.

Various events and processes have been considered in models of evolution at
the locus level in the literature. Gene duplication events cause the duplication
of a gene locus within a species tree branch, whereas gene loss events lead to
the loss of a locus. These two processes are illustrated in fig. 1.12 (A). Gene
family evolution by gene duplication and loss is often modeled using birth-
death process (BDP) models which operate along the species tree, much like
we defined the phylogenetic CTMCmodel as a CTMCmodel operating along
a phylogenetic tree (some examples include Hahn et al. 2005; De Bie et al.
2006a; Csűrös and Miklós 2009; Arvestad, Lagergren, and Sennblad 2009;
Sjöstrand et al. 2012; Szöllősi et al. 2012; Boussau et al. 2013; Szöllősi,
Rosikiewicz, et al. 2013; Tasdighian et al. 2017; Zwaenepoel and Van de
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Peer 2019a, 2020). The usual model for sequence data 𝑦1,… 𝑦𝑛 has a similar
form as above

1,… ,𝑛|𝑆, 𝜃 ∼ PhyloBDP(𝑆, 𝜃)
𝑦𝑖|𝑖, 𝜓𝑖 ∼ PhyloCTMC(𝑖, 𝜓𝑖)

Where it is assumed that the sequences 𝑦𝑖 evolve along the locus tree 𝑖 gen-
erated by the phylogenetic BDP model according to a phylogenetic CTMC
model. Note, however, that because of the variation generated in gene copy
number, we do not need the sequence data to learn about the parameters of the
genome-scale process. Indeed, observed gene family sizes already provide rel-
evant information for statistical inference (e.g. Hahn et al. 2005; Csűrös and
Miklós 2009; Zwaenepoel and Van de Peer 2020). Phylogenetic BDP models
of gene family evolution by gene duplication and loss form a major part of the
present work and will be discussed in detail in the coming chapters.

Other processes which can be considered at the locus level are horizontal gene
transfer (HGT) and gene conversion. The first involves copying a locus from
a single species tree lineage into another, contemporaneous lineage, whereas
the latter involves the replacement of the gene at one locus by a gene at a
homologous locus within the same species. Both are illustrated in fig. 1.12 (B).
De novo gene origin, or reactivation from a pseudogenized gene, is another
locus-level event (McLysaght and Hurst 2016). We shall not consider these
processes in the present dissertation. Importantly, the various evolutionary
events thought to operate at the locus level are highly idealized. Indeed, there
are no known in vivo molecular mechanisms which could accurately copy an
arbitrary single gene, and actual gene duplicates are often partial or chimeral
(e.g. Katju and Lynch 2003). Similarly, gene conversion often affects only
parts of a gene sequence. Furthermore, a single HGT, duplication or loss
event may involve multiple genes, violating the assumption of independence
across families, etc.

In addition, models at the locus level usually do not take into account the
population-level processes which generate actual genealogies. One can, how-
ever, consider the locus tree generated by a phylogenetic BDP as analogous
to the species tree in our discussion of coalescent models, and generate a gene
genealogy within a a locus tree. This is the so called three-tree model of Ras-
mussen and Kellis (2012; see alsoMallo, OliveiraMartins, and Posada 2016)),
which is of the form

1,… ,𝑛|𝑆, 𝜃 ∼ PhyloBDP(𝑆, 𝜃)
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Figure 1.13: Example of a gene tree within a locus tree within a species tree. (A)
Species tree (light gray) with locus tree (dark gray) for the first locus, and gene ge-
nealogy (black lines) within the locus tree. The inset on the left shows a close-up of
the underlying population-level coalescence process (assuming a constant-sizeWright-
Fisher population model). (B) Locus trees for the second and third locus, which orig-
inate through gene duplication events along the branch from 𝐺5 to 𝐺4 and the branch
form 𝐺5 to 𝐺3 respectively. It is assumed that gene duplications fix instantaneously.

𝑖|𝑖, 𝜙 ∼ CoalescentModel(𝑖, 𝜙)
𝑦𝑖|𝑖, 𝜓𝑖 ∼ PhyloCTMC(𝑖, 𝜓𝑖)

generating a gene tree  in a locus tree  in a species tree. This is exemplified
in fig. 1.13. This model has the two previous models as special cases, indeed,
if we assume the locus tree to be identical to the species tree, we are generating
a gene genealogy in a species tree according to a coalescent model. On the
other hand, if we assume, in the three-tree model, that the gene genealogy is
identical to the locus tree, we end up with a phylogenetic BDP as above. Usu-
ally, when either identification is made, the tree at the lowest level is referred
to as the gene tree, irrespective of whether it represents a gene genealogy or a
sequence of locus-level events.

Note however that this does not fully account for the interaction between
population-level and locus-level processes, which is a somewhat artifical dis-
tinction anyhow. In particular, gene duplication (or loss) is a mutational event
taking place in a single genome, and has to spread through the population in
order to establish as a new locus at the population level (i.e. as a new locus
of ‘the’ species’ genome). There is, in other words, for each locus-level event
a phase in which the population is polymorphic for the locus-level variant. If
a speciation event were to occur during such a polymorphic phase, different
daughter species may fix different locus-level variants, leading to ILS at the
locus level. The length of such a polymorphic phase is determined by popula-
tion genetic parameters, in particular the effective population size. Ignorance
of locus-level polymorphism amounts, from a population genetics perspective,
to the assumption that these mutations, when they fix, sweep through the popu-
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Figure 1.14: Locus trees in the presence of polyploidization. (A) Allopolyploid hy-
bridization between a descendant of 𝐺4 and a descendant of 𝐺5 gave rise to allopoly-
ploid lineage 𝐺2. (B) Autopolyploidization, where the polysomic phase (if any) is
suggested by the dark gray time span in the species tree.

lation instantaneously, and that when they do not fix, they are purged quickly
from the population. A recent attempt at coherently defining an integrative
model of gene family evolution which accounts for the latter issues may be
found in Li et al. (2021).

1.3.3.3 Genome-scale events

We have been considering the evolution of gene families within the context
provided by an assumed species tree 𝑆 (where we stress that we are making
rather liberal use of the term species, as we do for the term gene), which rep-
resents the evolution of a set of populations that descend from a common
ancestral population through time. The species tree represents the top level of
the evolutionary hierarchy, in the sense that we assume the whole genome (the
entire bag) to evolve within a single species tree. Of course, we may also wish
to model the evolutionary processes which generate species trees themselves
and consider the effects of evolutionary processes at this level on the observed
‘bags of genes’. Relevant ‘events’ at this level include speciation, extinction,
hybridization and polyploidization.

We will not deal explicitly with models for macroevolutionary dynamics,
which are concerned with the processes of speciation and extinction and the
shapes of species trees (but see chapter 4). We deal quite extensively with
polyploidization, or whole-genome duplication (WGD), which leads to a
duplication of the entire bag of genes. We will see that additional aspects,
besides the simple correlated duplication of loci across gene families, must
be taken into account to adequately model WGDs. Note that hybridization
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and allopolyploidization cause the species ‘tree’ to be not very tree-like after
all, lending itself rather to a network representation (fig. 1.14 A). However,
because the evolutionary histories at the lower levels of the hierarchy remain
tree-like, we do not usually have to worry about phylogenetic networks
(see for instance the locus tree in fig. 1.14 A, also our Drosera examples in
chapter 5 and chapter 6).

Ancestral autopolyploidy on the other hand does not involve reticulation at
the species tree level, and does not in itself create new loci, at least as long as
there is polysomic inheritance. Only after a process referred to as rediploidiza-
tion (Wolfe 2001) is disomic inheritance reinstated and can the duplicated
genes be regarded as distinct loci evolving according to the locus-level pro-
cesses considered above (fig. 1.14 B). As should be obvious from fig. 1.14 (B),
when this rediploidization process is not completed before the occurrence of
a speciation event, yet another source of ILS, referred to as ‘lineage-specific
ohnolog resolution’ by Robertson et al. (2017) can lead to variation in gene
trees across families. Finally, we note that the difference between allo- and au-
topolyploidy is not always clear cut. Many autopolyploids are formed through
the hybridization of unreduced gametes from distinct parents, in which case
the whole-genome ‘duplication’ is really a merger of two different genomes
as in allopolyploidy. The difference in inheritance mode can however be sig-
nificant for gene family evolution. Indeed, if there is no recombination among
the merged genomes, homeologous genes will have diverged before the WGD
event (as is clear from fig. 1.14 A), whereas if there is recombination, home-
ologous gene pairs are more likely to diverge after the WGD event (Roux and
Pannell 2015). However, when considering long time scales (as we typically
do in this dissertation), the difference may become of little relevance.

1.4 Aims and outline of this thesis

In this introductory chapter, we have sought to motivate our approach towards
the challenge of making sense of genomic data and genome evolution. We
have provided an overview of what we take to be most important aspects of
the Bayesian paradigm in statistics. Lastly, we sketched a high-level picture
of the evolutionary concepts and models that will be used to study genomic
diversity in th ensuing chapters. The broad aims of the rest of this dissertation
are then (1) to devise statistical models of genome-scale evolution from the
‘bag of genes’ point of view, (2) to implement efficient methods for inference
under these models, (3) to assess to what extent these models are adequate,
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and in which ways they need to be expanded in order to adequately fit the
data, and (4) to use these models and methods to learn about the processes of
genome evolution and evolutionary history in a principled way.

Specifically, in chapter 2, which is more of a prelude, we deal with gene
family evolution within a single genome. This short chapter introduces the
birth-death process models of gene family evolution by gene duplication and
loss which take center stage in later chapters of the work. We take a brief look
at age and family size distributions and simple models which can account for
their characteristic form.

In chapter 3 we consider gene family evolution by gene duplication and loss
in a phylogenetic setting. We present the theory of phylogenetic birth-death
process models and implement methods for genome-scale Bayesian inference
of rates of gene family evolution from gene count data. We spend considerable
effort on assessing how well simple birth-death process models fit observed
patterns of genome evolution using a number of example empirical data sets.
We study the inference of ancient whole-genome duplications from gene count
data. Lastly we develop and evaluate a new model of gene family evolution
based on multi-type branching processes to account for some of the failures
of the simple birth-death model of gene family evolution.

In chapter 4 we switch perspectives from gene counts to gene trees. This
chapter serves as a prelude to the two chapters that succeed it, defining the
concept of a conditional clade distribution that features heavily in the latter.

In chapter 5 we implement a likelihood-free Bayesian inference method for
species tree inference under the multispecies coalescent model. The method
takes a somewhat intermediate position between two widely adopted strate-
gies for the latter goal, taking advantages from both. Several case studies are
presented.

In chapter 6 we focus on model-based gene tree reconciliation for phyloge-
netic birth-death process models. We develop a Bayesian approach based on
the amalgamation principle of Szöllősi, Rosikiewicz, et al. (2013) for joint
genome-scale joint inference of gene trees and their reconciliation under mod-
els of gene family evolution which account for gene duplication, loss and
whole-genome duplications. We study in detail the problem of phylogenomic
inference of ancient whole-genome duplications.

We end with a brief conclusion assessing what we did and did not achieve
in the body of the present work. We note that, while we describe previously
publishedmethods (mainly in chapter 3 and chapter 6), virtually all of thework
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in this thesis is unpublished in the presented form. Where we have drawn from
our previously published articles, this will be indicated accordingly.
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2 Single-genome models of gene family evolution

We shall start our inquiry on what we can learn about genome evolution from
the ‘bag of genes’ point of view, introduced in the preceding chapter, by tak-
ing a look at the gene content of individual genomes. Following the popular
practice of using an ‘-ome’ suffix, the collection of all protein-coding gene
families in a single genome will be loosely referred to as the paranome. The
paranome is one of the most elementary sources of information about genome
evolution and has been studied since the first genome projects provided the
necessary data (Huynen and Van Nimwegen 1998; Lynch and Conery 2000,
2003; Karev et al. 2002; Maere et al. 2005). Two features of the paranome are
of special interest: (1) the gene family size distribution and (2) the age distri-
bution. Both aspects will be dealt with in this still rather introductory chapter,
not only because they are interesting for their own sake, but also because they
are important for the inference of ancient whole-genome duplications (WGDs)
and genome evolutionary rates. The main purpose of this chapter, however,
is to present some simple results that appear (to us at least) not to be widely
known, and to introduce some key ideas we shall workwith later – in particular
birth-death process models of gene family evolution.

2.1 The size and age distribution of gene families

Two aspects of the collection of gene families within a single genome can pro-
vide statistical insights in genome evolution. The (empirical) size distribution
is simply the number of families of a certain size. The (empirical) age distri-
bution records for each duplicate gene its time since duplication. Importantly
however, neither the size distribution nor the age distribution are directly ob-
servable from our bag of genes. Before embarking on our attempts to devise
models for the latter, we need to specify what it is exactly that we assume to
observe.
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Figure 2.1: Examples of whole-paranome age distributions for Caenorhabditis ele-
gans, Vitis vinifera and Arabidopsis thaliana, where age is measured by the pairwise
synonymous divergence 𝐾S, estimated using maximum-likelihood under the model of
Goldman and Yang (1994) using the codeml program of Z. Yang (2007a).

Note first of all that the concept of orthogroup as defined in the previous chap-
ter is not well-defined in the single-genome setting. Indeed, there is noMRCA
with respect to which we could meaningfully define an orthogroup. In practice
however, paralogous gene families within a single-genome can be inferred us-
ing standard orthogroup inference tools (which are approximate anyhow, as
we noted in chapter 1), by clustering the sequence similarity graph for the gene
set under consideration. The assumption is then that, since all gene families
are defined with respect to the same sequence similarity threshold and cluster-
ing algorithm, their sizes are comparable, and we roughly obtain orthogroups
with respect to some distant ancestor. Clearly this is ad hoc, but we shall have
to live with it. We shall henceforth assume that we have meaningful gene
families, and hence the associated size distribution.

The age distribution for a given paranome is however less straightforwardly
obtained, even if we succeed in delimiting families. Obviously, extant gene
sequences do not bear a tag which says when they were born. What we have
at our disposal to estimate the age of a gene duplicate is its sequence, which in
itself does not say anything about its age either. The molecular divergence be-
tween two sequences, however, provides information about their divergence
time, which in the context of a strictly paralogous family corresponds to the
time of a duplication event. Estimating divergence times from molecular data
is a complicated problem, as molecular divergence provides information about
the evolutionary distance, which is a product of the substitution rate and di-
vergence time, but not the product of the two (see our examples in chapter 1).
If, however, the substitution rate is approximately constant across the genome
and over time, the divergence time between two genes will be a simple linear
function of the molecular distance between them. The latter assumption is
known as the molecular clock, and if it were to hold, one could use molecu-
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lar distances to construct an approximation of the age distribution. While the
molecular clock is usually a rather terrible assumption (see also later chapters),
for putatively neutral sites (i.e. sites where substitutions are unlikely to have a
fitness effect, or unlikely to have very different fitness effects at least) within
a single genome over a not too long time scale, it may reasonably hold.

For this reason, the synonymous distance (i.e. the expected number of synony-
mous substitutions per synonymous site between two coding sequences), or
𝐾S, has often been used to measure divergence between sequences for these
purposes. Assuming a CTMC model of sequence evolution defined at the
codon level, such as the one of Muse and Gaut (1994) or Goldman and Yang
(1994), one can obtain an estimate of the synonymous distance using maxi-
mum likelihood or Bayesian inference (Yang 2006). One can thus estimate
a 𝐾S-based age distribution as a proxy for the true age distribution, and this
was first taken to great advantage in Lynch and Conery (2000). As we will not
make extensive use of age distributions beyond some simple considerations
in the present chapter and chapter 6, we will not dwell on the details of infer-
ring these distributions further here, and refer the reader to Vanneste, Van de
Peer, and Maere (2013), Zwaenepoel and Van de Peer (2019b) and Sensalari,
Maere, and Lohaus (2021) instead. It is however important to note that such
𝐾S age distributions, as used in practice, are rather crude estimates of the true
age distribution, usually relying on pairwise ML distance estimates and rather
ad hoc strategies for estimating the 𝐾S-scale age of duplication events deeper
in the gene family phylogeny. The hope is of course that in the coarse-scale
picture of the whole paranome these sources of error will not matter too much.
Some examples of 𝐾S-based whole-paranome age distributions are shown in
fig. 2.1. Note the conspicuous ‘bumps’ in the distributions of A. thaliana and
V. vinifera, which are widely believed to be the signatures of ancient WGD
events (Blanc and Wolfe 2004b; Vanneste, Van de Peer, and Maere 2013).

2.2 Deterministic models for the paranome

Before delving into the main topic of interest in this chapter, we first intro-
duce two historically rather important deterministic population models for the
whole-paranome age distribution. Both use a difference (or differential) equa-
tion to model the number of gene duplication events of a certain age (on a 𝐾S
scale) retained in extantly observed paranomes.
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2.2.1 The demographic model of Lynch & Conery

In one of the first studies that sought to quantify rates of gene family evolution
from genome data, Lynch and Conery (2003) used a very simple demographic
model to estimate the genome-wide gene duplication and loss rate from a his-
togram of the 𝐾S distribution (see also Lynch and Conery (2000) for an even
simpler model). Assuming a per-gene duplication rate 𝜆 and a loss rate 𝜇 for
duplicated gene copies, they modeled the number of duplicated gene copies
𝑁(𝑡) per ancestral gene over discrete time steps of length Δ𝑡 recursively as

𝑁(𝑡 + Δ𝑡) = 𝑁(𝑡) + 𝜆Δ𝑡[1 +𝑁(𝑡)] − 𝜇Δ𝑡𝑁(𝑡) (2.1)

It is however somewhat more convenient to consider the model in continuous
time, using the associated ODE

𝑑𝑁(𝑡)
𝑑𝑡

= (𝜆 − 𝜇)𝑁(𝑡) + 𝜆

Assuming equilibrium 𝑑𝑁(𝑡)∕𝑑𝑡 = 0 and 𝜆 < 𝜇, we find that the number of
duplicate genes per family equals 𝜆∕(𝜇−𝜆). At equilibrium, the size of a gene
family is therefore 𝜇∕(𝜇−𝜆). Denoting by 𝐹 (𝑡) the number of duplicate genes
of an age < 𝑡 in the extant duplicate gene pool, and assuming the population
is (and has been) at equilibrium, we have under the stated assumptions

𝐹 (𝑡 + Δ𝑡) − 𝐹 (𝑡) =
𝜇

𝜇 − 𝜆
𝜆Δ𝑡𝑒−𝜇𝑡

Where the assumption of 𝜆 ≪ 𝜇 entails that the probability of a gene under-
going additional duplications upon a duplication, before losing a duplicate, is
negligible. Dividing both sides by Δ𝑡 and taking the limit as Δ𝑡↓0 we obtain
the age distribution in continuous time

𝐷(𝑡) = 𝑑𝐹 (𝑡)
𝑑𝑡

=
𝜆𝜇

𝜇 − 𝜆
𝑒−𝜇𝑡 ≈ 𝜆𝑒−𝜇𝑡

Which corresponds to a simple exponential survival law, entailing a linear
relationship between log𝐷(𝑡) and 𝑡.

Clearly the exponential model only fits the data reasonably in the low 𝐾S re-
gion, with substantial deviations easily spotted by eye at higher 𝐾S, and as
a result parameters should only be estimated from the young age cohort of
duplicates. Lynch and Conery (2003) fitted the discrete time model to a his-
togram of the𝐾S distribution of interest for the domain𝐾S < 0.1 in frequency
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bins of 𝐾S = 0.01 using a least squares regression of log𝐷(𝑡) on 𝑡, obtaining
parameter estimates for 𝜆 and 𝜇 on a 𝐾S ‘time’ scale. The slope of the regres-
sion 𝑏 provides an estimator for the loss rate �̂� = −𝑏, and the duplication rate
can be estimated as �̂� = 𝑒𝑎�̂�∕(�̂� + 𝑒𝑎) ≈ 𝑒𝑎, where 𝑎 is the intercept (when
the histogram is expressed on a density scale). While straightforward, this
parameter estimation procedure is quite delicate and serves only to estimate
short-term rates of genome evolution. We provide an illustration using the age
distributions shown in fig. 2.1.

Example (Lynch and Conery (2003)). We fit log-linear regressions to the
𝐾S age histogram of the number of retained duplication events per family for
C. elegans and V. vinifera. We consider 𝐾S intervals of length 0.01 over a
range of 0.1 and 0.2 𝐾S. Estimates are shown in tbl. 2.1 and the regression
lines and relevant data are plotted in fig. 2.2.

Table 2.1: Estimates of duplication rates (𝜆, number of duplication events per gene
per 𝐾S), loss rates (𝜇, number of gene loss events per duplicated gene per 𝐾S) and
half-lives of duplicate genes (𝑡1∕2, on a 𝐾S scale) for C. elegans and V. vinifera based
on the regressions graphed in fig. 2.2. Estimates based on regressions on different 𝐾S
ranges are shown.

Species 𝐾S range �̂� �̂� (SE) 𝑡1∕2

C. elegans < 0.2 0.5 5.8 (1.0) 0.12
C. elegans < 0.1 0.5 10.1 (2.8) 0.07
V. vinifera < 0.2 1.3 6.7 (0.8) 0.11
V. vinifera < 0.1 1.5 10.5 (1.4) 0.07

The 𝐾S range chosen for the regression analysis can however have quite a
strong effect on the estimated parameter values (tbl. 2.1). Furthermore, this
approach uses only a tiny fraction of the available 𝐾S distribution to estimate
parameters of interest relevant for genome evolution over short evolutionary
time scales. Nevertheless, the approach can be useful to get very crude esti-
mates for the short term rates of gene duplication and loss. Using the substitu-
tion rate estimates of Lynch and Conery (2003), the duplication rate estimate
would be about 1 duplication per 100 million years (My) for both C. elegans
and V. vinifera, whereas the half life of a duplicated gene would be 2.2 and
5.4 My respectively. □

Note that we cannot easily apply this approach to the A. thaliana 𝐾S distribu-
tion shown above, as here the young cohort of duplicate genes used for the
regression approach (𝐾S < 0.2 say) seems to contain WGD-derived gene du-
plicates, violating model assumptions.
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Figure 2.2: Log-linear regressions for the C. elegans and V. vinifera 𝐾S distributions,
yielding duplication and loss rate estimates under the model of Lynch and Conery
(2003) displayed in tbl. 2.1. The rightmost plot shows the𝐾S distribution for Vitis over
an interval of 1𝐾S with the fitted exponential distribution (black line).

2.2.2 The model of Maere et al.

Maere et al. (2005) and Vanneste, Van de Peer, and Maere (2013) consid-
ered a more sophisticated model akin to the one of Lynch and Conery (2003),
but which accounts for whole-genome duplication (WGD) events and aims at
modeling the full age distribution (as opposed to a small range where equilib-
rium assumptions are reasonable). Similar to the model of Lynch and Con-
ery (2003), the model is specified as a discrete evolutionary model setting,
modeling the paranome size in discrete time steps corresponding to 𝐾S units.
Notably, the model is specified directly in terms of the number of retained
duplicates in each discrete age class (i.e. the age distribution 𝐷 above).

Consider a genome evolving in discrete time steps 1, 2,… , 𝑇 by small-scale
duplication and loss (SSDL), with a finite number 𝑘 ofWGD events occurring
at time points (𝑡1, 𝑡2,… , 𝑡𝑘). Maere et al. (2005) model the number of gene
duplicates 𝐷𝑖(𝑥, 𝑡) of age 𝑥 in time interval 𝑡 ∈ (1, 2,… , 𝑇 ) retained from
‘duplication mode’ 𝑖 (with 𝑖 = 0 corresponding to small-scale duplication,
and 𝑖 > 0 corresponding to WGD 𝑖) according to the following laws

𝐷0(1, 𝑡) = 𝜆Δ𝑡
( ∞∑

𝑥′=1
𝐷(𝑥′, 𝑡 − 1) + 𝐺0

)
𝐷𝑖(1, 𝑡) = 𝛿(𝑡, 𝑡𝑖)

( ∞∑
𝑥′=1

𝐷(𝑥′, 𝑡 − 1) + 𝐺0

)
𝑖 > 0

𝐷𝑖(𝑥, 𝑡) = 𝐷𝑖(𝑥 − 1, 𝑡 − 1)
(
𝑥∕(𝑥 − 1)

)−𝛼𝑖 𝑥 > 1, 𝑖 ≥ 0 (2.2)

with 𝐷(𝑥, 𝑡) =
∑

𝑖𝐷𝑖(𝑥, 𝑡). Here 𝐺0 is the initial number of genes in the
genome, 𝛿 denotes the Dirac delta function, 𝜆 is the per-gene rate of small-
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scale duplication and 𝛼𝑖 is the power law decay constant for duplication mode
𝑖, determining the rate of gene loss. Note that under this model and for posi-
tive 𝛼𝑖, the decay rates decrease over time, so that the longer a duplicate has
been preserved, the less likely it becomes to get lost. This is of course sup-
posed to model the various processes by which gene duplicates become stably
established in a genome (e.g. by sub- or neofunctionalization), and renders the
model applicable to long-term evolutionary scales (in contrast to the model of
Lynch and Conery (2003)). Maere et al. (2005) set 𝑇 = 50 with each time
step corresponding to 0.1𝐾S.

Two additional points should be noted about this model. The first is that, as
in the model of Lynch and Conery (2003), it is assumed that there is a ‘base’
set of 𝐺0 genes which is not subject to gene loss. The loss rate in this model
(embodied by the 𝛼𝑖) is therefore associated exclusively with the loss of dupli-
cate gene copies. Secondly, by modeling the age distribution and not the 𝐾S
distribution (albeit with age on 𝐾S scale), the model results in a discrete peak
of duplicated genes at WGD times 𝑡𝑖, 𝑖 ∈ {1,… , 𝑘}. Obviously however, vari-
ation in the realized number of substitutions, as well as differences in substitu-
tion rates across genes, causes the WGD-associated peaks in the distribution
to be distributed around some mean 𝐾S age. The latter is addressed by Maere
et al. (2005) by assuming a Poisson model for the number of substitutions
since duplication conditional on the age of the duplication event. Maere et al.
(2005) used this model to study gene family evolution in Arabidopsis thaliana.
Specifically, they fitted the model (using simulated annealing and the 𝜒2 dis-
tance as objective function) to 𝐾S age distributions for different functional
classes of genes (based on Gene Ontology (GO) annotations), and used the fit-
ted 𝛼𝑖 to compare the long-term duplicate retention patterns of gene duplicates
derived from the SSDL process with WGD-derived duplicates.

Probably due to the lack of a simple parametric form and estimation procedure,
the above model has not been widely adopted in evolutionary genomics. In a
statistically somewhat ad hoc way, one can however use the age distribution
generated by eq. 2.2 as a probability density for the empirical age distribution,
and use the latter as a likelihood function in a Bayesian model. This approach
can be used to estimate duplication rates and decay parameters, as well as the
timing of ancient WGDs on a 𝐾S scale. We illustrate this approach briefly for
the Vitis paranome. We shall not have the opportunity to use the model in the
rest of our work however, and will consequently not go into much detail here.

Example (Maere et al. (2005)). To conduct Bayesian inference for the
model of Maere et al. (2005), we generate an approximate likelihood function
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Figure 2.3: The model of Maere fitted to the Vitis age distribution. (A) Empirical
𝐾S age distribution normalized as a probability distribution (histogram) and posterior
predictive smoothed age distribution (posterior mean age distribution with 95% uncer-
tainty intervals). The posterior distribution for the WGD time point (on a 𝐾S scale)
is shown in red. (B) Empirical age distribution for the observed number of duplicate
genes per family (gray) and posterior mean unsmoothed age distribution (i.e. the pre-
dicted distribution for eq. 2.2 parameterized by the posterior mean parameter values).

𝑝(𝑦|𝜆, 𝛼, 𝑡) for the observed duplication ages on a 𝐾S scale by simulating
the deterministic model of eq. 2.2 (we use Δ𝑡 = 0.05𝐾S and 𝑇 = 100),
applying Poisson smoothing and interpolating the density (using a quadratic
B-spline). We use an exponential prior with mean 1 for both the duplication
rate 𝜆 and the decay rates 𝛼0 and 𝛼1, and assign a discrete Uniform prior to
the WGD age bin. We sample from the posterior using a simple adaptive
Metropolis-Hastings algorithm (see Appendix A; for references to relevant
code, see Appendix B). The posterior predictive empirical 𝐾S distribution
and 𝐾S-scale age distribution are shown in fig. 2.3. The model appears
to provide a very good fit, although with suspiciously narrow uncertainty
intervals. We obtain a posterior mean duplication rate of 0.99 per gene per
𝐾S with a (0.82, 1.10) 95% uncertainty interval, which is roughly similar
to the short term rate estimated above using the young duplicate cohort.
Similarly, applying the same model (without WGD) to C. elegans, we obtain
a duplication rate estimate of 0.31 (0.12, 0.45) duplications per gene per
𝐾S. □

2.3 Probabilistic models of paranome evolution

While useful, the above models have important limitations. Both models con-
sider the whole paranome as evolving in a deterministic manner, with a single
constant rate of gene duplication for the entire population of genes. In the
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deterministic setting, there is no principled way to relate either the predicted
(equilibrium) number of genes in a family to observed family sizes or the pre-
dicted number of genes in an age interval with an observed age distribution,
and inference amounts to fitting the model to the data assuming some opti-
mization criterion (e.g. least-squares in the case of Lynch and Conery (2003)).
Indeed, these models do not admit asking questions like: what is the proba-
bility that an extant family consists of 𝑛 members? What is the probability
that an extant duplicate pair derives from a duplication that happened a time
𝑡 in the past? Similar to how we model long-term sequence evolution (see
chapter 1), we would like to explicitly model the variation in outcomes of the
assumed evolutionary process using stochastic models. It is arguably more
reasonable to consider, for instance, any particular paranome and its associ-
ated age distribution a stochastic realization of some random process than to
model the number of genes in a family using an ODE or difference equation.
Furthermore, explicit probabilistic models allow using all the data directly for
parameter inference using Bayesian methods or otherwise. It is therefore in-
sightful to consider stochastic analogs of the simple models considered above.
We will have extensive use for such models later when we consider gene fam-
ily evolution along a species phylogeny, where the deterministic models are
no longer applicable.

2.3.1 Branching processes and birth-death process models

Virtually all conceivable models of gene family evolution by small-scale du-
plication and loss, deterministic or probabilistic, assume birth-death like evo-
lution of genes within families, where gene copies are treated as ‘particles’
which give rise to offspring particles with a certain rate. Conceived probabilis-
tically, these models of evolution by SSDL naturally lead to continuous-time
Markov processes which belong to the class of branching processes, birth-
death processes, or both.

A continuous-time branching process is a model for a population of particles
evolving according to some probabilistic law. Each particle in the system
‘lives’ for some (typically random) time interval, after which it gives rise to
a random number of offspring particles distributed according to an offspring
distribution with probability mass function (pmf) 𝜉 and probability generating
function (pgf) 𝑔(𝑠) =

∑∞
𝑘=0 𝜉(𝑘)𝑠

𝑘. The number of particles in the population
is assumed to evolve as a continuous-timeMarkov chain {𝑋(𝑡) ∈ ℕ∶ 𝑡 ∈ ℝ+},
and the transition probabilities 𝑝𝑖𝑗(𝑡) = ℙ{𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖} satisfy the so-
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called branching property (Athreya and Ney 1972)

∞∑
𝑗=0

𝑝𝑖𝑗(𝑡)𝑠𝑗 =
( ∞∑

𝑗=0
𝑝1𝑗(𝑡)

)𝑖

which is tantamount to requiring the evolution of different particles in the sys-
tem to be statistically independent. More general continuous-time branching
processes can be defined, with for instance age-dependence or multiple types
of particles (see chapter 3), but they all satisfy the fundamental assumption
that offspring particles behave independently conditional on the parent parti-
cle, so that the branching property holds. Because of the branching property,
many interesting results can be derived for branching processes using manip-
ulations of the associated generating functions.

Continuous-time birth-death processes (BDPs) are similarly defined as
Markov processes on the state space of the nonnegative integers, but with
the constraint that transitions occur only between neighboring states. The
branching property need not hold for BDPs, but when it does, the BDP is
obviously also a branching process. A rich body of theory for such processes
has been developed in various fields, such as probability theory ‘proper’
(Kendall 1948; Karlin and McGregor 1957; Allen 2010), statistics (Crawford,
Minin, and Suchard 2014; Tavaré 2018), operations research (in particular
queueing theory, e.g. Kendall (1953)), epidemiology (Bailey 1990; Crawford
and Suchard 2012; Stadler et al. 2012; Kühnert et al. 2014)1, population
genetics (Moran 1958; Crawford and Suchard 2012) and various parts of
phylogenetics and evolutionary genomics, such as phylogenetic tree inference
(Thompson et al. 1975; Rannala and Yang 1996), macroevolution (Yule 1925;
Nee 2006; Lambert and Stadler 2013), phylodynamics (Stadler et al. 2012;
Kühnert et al. 2014) and gene family evolution (Hahn et al. 2005; Csűrös
and Miklós 2009). We will make extensive use of BDPs in the remainder of
this thesis, and hence it will be worthwhile to work out some basic properties
of them here.

More formally, a continuous-time Markov chain {𝑋(𝑡)∶ 𝑡 ∈ ℝ+}, where
𝑋(𝑡) ∈ ℕ, is a time-homogeneous BDP if it has transition probabilities of
the following form

𝑝𝑖𝑗(Δ𝑡) ≝ ℙ{𝑋(𝑡 + Δ𝑡) = 𝑗|𝑋(𝑡) = 𝑖} (2.3)

1The by now all too familiar compartmental models for epidemic progression such as SIS,
SIR and suchlike are instances of birth-death models.
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=

⎧⎪⎪⎨⎪⎪⎩
𝜆𝑖Δ𝑡 + 𝑜(Δ𝑡) 𝑗 = 𝑖 + 1
𝜇𝑖Δ𝑡 + 𝑜(Δ𝑡) 𝑗 = 𝑖 − 1, 𝑖 ≥ 1
1 − (𝜆𝑖 + 𝜇𝑖)Δ𝑡 + 𝑜(Δ𝑡) 𝑖 = 𝑗
𝑜(Δ𝑡) |𝑖 − 𝑗| > 1

(2.4)

Note that time-homogeneity implies that the transition probabilities over an
interval (𝑡, 𝑡 + Δ𝑡) only depend on Δ𝑡 and not on 𝑡, justifying the above nota-
tion. The above specification, where the 𝜆𝑖 and 𝜇𝑖 are arbitrary functions of the
state, defines the so-called general BDP. Note in particular that when 𝜆𝑖 = 0
for all 𝑖 > 𝑁 for some𝑁 , the state space is effectively bounded by𝑁 . Karlin
and McGregor (1957) were the first to study general BDPs in extenso, where
they showed, among other things, the existence of transition probabilities, and
developed a mathematically sophisticated theory for deriving transient distri-
butions and other properties. However, analytical expressions or straightfor-
ward numerical methods for efficiently computing quantities such as transition
probabilities associated with the general BDP are not available, and sophisti-
cated numerical methods or approximations (for instance by truncating the
state space and using the usual matrix-based methods for finite CTMCs) must
be adopted. Crawford and Suchard (2012) for instance developed a numerical
approach based on a continued fraction representation of the Laplace trans-
form of the transient distribution to compute transition probabilities.

Tractable special cases of the BDP appear however for particular functions 𝜆𝑖
and 𝜇𝑖. A very important special case is the simple linear BDP2, obtained
when 𝜆𝑖 = 𝑖𝜆 and 𝜇𝑖 = 𝑖𝜇 for all 𝑖 ∈ ℕ. A suggestive way to characterize the
linear BDP is to consider the evolution of a single particle in the population.
Upon its birth, the particle lives for an exponentially distributed time with
mean 1∕(𝜆 + 𝜇), after which the particle either is removed from the system
or is replaced by two identical daughter particles, with probability 𝜇∕(𝜆 + 𝜇)
and 𝜆∕(𝜆 + 𝜇) respectively. In the latter case, two independent copies of the
same process are started. Clearly then, the linear BDP is a continuous-time
branching process with offspring pgf 𝑔(𝑠) = (𝜇 + 𝜆𝑠2)∕(𝜇 + 𝜆). A solution
for the pgf of the transition probabilities 𝑝1𝑗(𝑡) can be derived from the Kol-
mogorov forward equations (see e.g. Crawford and Suchard (2012) or Allen
(2010)), yielding

𝑓 (𝑠, 𝑡) =
∞∑
𝑗=0

𝑝1𝑗(𝑡)𝑠𝑗 =
𝜇(𝑠 − 1) + (𝜆𝑠 − 𝜇)𝑒(𝜇−𝜆)𝑡

𝜆(𝑠 − 1) + (𝜆𝑠 − 𝜇)𝑒(𝜇−𝜆)𝑡

2Sometimes also referred to as the Kendall process, after Kendall (1948).
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and by the branching property we have 𝑓𝑖(𝑠, 𝑡) =
∑∞

𝑗=0 𝑝𝑖𝑗(𝑡)𝑠
𝑗 = 𝑓 (𝑠, 𝑡)𝑖. In

the critical case where 𝜆 = 𝜇, we have

𝑓 (𝑠, 𝑡) = 1 − (𝜆𝑡 − 1)(𝑠 − 1)
1 − 𝜆𝑡(𝑠 − 1)

An important quantity is the extinction probability 𝜖(𝑡), i.e. the probability that
a single particle does not have descendants after a time 𝑡. This can be obtained
from the pgf by sending 𝑠 to zero

𝜖(𝑡) = 𝑓 (0, 𝑡) =

{
𝜇(1−𝑒(𝜇−𝜆)𝑡)
𝜆−𝜇𝑒(𝜇−𝜆)𝑡 𝜆 ≠ 𝜇
𝜆𝑡

1+𝜆𝑡 𝜆 = 𝜇
(2.5)

Bailey (1990) further derived an expression for the general transition proba-
bilities using the pgf

𝑝𝑖𝑗(𝑡) =
min(𝑖,𝑗)∑
𝑘=0

(
𝑖
𝑘

)(
𝑖 + 𝑗 − 𝑘 − 1

𝑖 − 1

)
𝛼𝑖−𝑘𝛽𝑗−𝑘(1 − 𝛼 − 𝛽)𝑘 (2.6)

where 𝛼 = 𝜖(𝑡) and 𝛽 = (𝜆∕𝜇)𝜖(𝑡).

We denote by ℎ𝑖,𝑡(𝑗) = 𝑝𝑖𝑗(𝑡) the distribution of 𝑋(𝑡) for fixed 𝑡 and 𝑋(0) = 𝑖
and refer to it as the transient distribution. The transient distribution ℎ1,𝑡(𝑗)
of the simple linear BDP has been referred to as a shifted geometric distribu-
tion by Csűrös and Miklós (2009), which has the following probability mass
function

ℎ1,𝑡(𝑗) =

{
𝛼 𝑗 = 0
(1 − 𝛼)(1 − 𝛽)𝛽𝑗−1 𝑗 > 0

From this we see that the transient distribution of the number of descendants
of a single particle conditioned on non-extinction is geometric with parameter
1− 𝛽. Other properties such as the conditional mean and variance of𝑋(𝑡) are
readily derived from the pgf. Importantly, the linear BDP has no stationary
distribution, with almost sure extinction for 𝜆 < 𝜇 and non-zero probability of
so-called explosion for 𝜆 > 𝜇. The linear BDP has itself two other commonly
encountered BDPs as special cases, being the pure birth3 and pure death pro-
cesses, obtained when 𝜇 = 0 and 𝜆 = 0 respectively.

3Often referred to as theYule process after Yule (1925), a pioneeringwork in the application of
stochasticmodels to evolutionary problems, althoughYule actually developed amore complicated
model in that study (see below). Also sometimes referred to as the Yule-Furry process after
Wendell Furry who applied it to problems related to radioactive decay.
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2.3.2 A stochastic version of the model of Lynch & Conery

After this short detour introducing birth-death process models we return to the
problems of gene family evolution from the single-genome perspective. The
cognate stochastic variant of the model of Lynch and Conery (2003) would be
a continuous-time BDP with the following transition probabilities

𝑝𝑖𝑗(Δ𝑡) =

⎧⎪⎪⎨⎪⎪⎩
(𝑖 + 1)𝜆Δ𝑡 + 𝑜(Δ𝑡) 𝑗 = 𝑖 + 1
𝑖𝜇Δ𝑡 + 𝑜(Δ𝑡) 𝑗 = 𝑖 − 1
1 − (𝑖(𝜆 + 𝜇) + 𝜆)Δ𝑡 + 𝑜(Δ𝑡) 𝑖 = 𝑗
𝑜(Δ𝑡) |𝑖 − 𝑗| > 1

Where the random variable 𝑋(𝑡) denotes the number of duplicated genes per
ancestral gene at time 𝑡 in a gene family, so that the family size is 𝑋(𝑡) +
1. This model is almost – but not quite – the simple linear BDP discussed
above, the difference being that the duplication rate 𝜆𝑖 when in state 𝑖 is equal
to (𝑖 + 1)𝜆 instead of 𝑖𝜆. In fact, the model is equivalent to a special case
of the so-called linear birth-death-immigration process (BDIP) (Bailey 1990;
Allen 2010) with immigration rate 𝜈 equal to the birth rate 𝜆. Furthermore,
it turns out that the same BDIP model is used for modeling the insertion and
deletion dynamics in the famous TKF91model used for evolutionary sequence
alignment (Thorne, Kishino, and Felsenstein 1991; Holmes and Bruno 2001).
In fig. 2.4 we show example realizations simulated from this model.

Letting 𝑝𝑖(𝑡) ≝ ℙ{𝑋(𝑡) = 𝑖}we can derive the differential difference equations
for the 𝑝𝑖(𝑡) using the Markov property, considering a time intervalΔ𝑡we note
that

𝑝0(𝑡 + Δ𝑡) = (𝜇Δ𝑡)𝑝1(𝑡) + (1 − 𝜆Δ𝑡)𝑝0(𝑡) + 𝑜(Δ𝑡)
𝑝𝑖(𝑡 + Δ𝑡) = 𝑖(𝜆Δ𝑡)𝑝𝑖−1(𝑡) + (𝑖 + 1)(𝜇Δ𝑡)𝑝𝑖+1(𝑡)

+ [1 − {𝑖(𝜆 + 𝜇) + 𝜆}Δ𝑡]𝑝𝑖(𝑡) + 𝑜(Δ𝑡)

Subtracting 𝑝𝑖(𝑡) from both sides, dividing by Δ𝑡, and sending Δ𝑡 → 0, we
obtain

𝑑𝑝0(𝑡)
𝑑𝑡

= 𝜇𝑝1(𝑡) − 𝜆𝑝0(𝑡)

𝑑𝑝𝑖(𝑡)
𝑑𝑡

= 𝑖𝜆𝑝𝑖−1(𝑡) + (𝑖 + 1)𝜇𝑝𝑖+1(𝑡) − [𝑖(𝜆 + 𝜇) + 𝜆]𝑝𝑖(𝑡)
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Figure 2.4: Simulations of the paranome under the stochastic BDIP model. The top
row shows results from a model with 𝜆 = 0.75 and 𝜇 = 2, whereas the bottom row
shows results for 𝜆 = 1.5 and 𝜇 = 2. (a) Representative random gene trees simulated
from the BDIP models. (b) The reconstructed trees for the gene trees in (a), pruning
the duplicates which are lost before reaching the present. (c) The whole-paranome age
distributions based on a simulation of 5000 independently evolving gene families. The
orange line shows the probability density function for the model (eq. 2.8), whereas the
green line shows the exponential approximation 𝜇𝑒−𝜇𝑡 thereof. (d) as in (c) but on a
log10 scale.

The pgf for the BDIP can be derived (Bailey 1990) but we will have little use
for it here. It will be more interesting to consider the equilibrium situation
studied by Lynch and Conery (2003) in the deterministic model, which corre-
sponds in the stochastic setting to the stationary distribution 𝜋 of the Markov
process. Assuming 𝜆 < 𝜇, the stationary distribution can be derived from the
differential-difference equations above by setting 𝑑𝑝𝑖∕𝑑𝑡 = 0. We arrive at
the following stationary pmf for 𝑖 ≥ 1

𝜋𝑖 =
(𝜆
𝜇

)𝑖
𝜋0

where 𝜋𝑖 of course denotes ℙ{𝑋(𝑡) = 𝑖} at stationarity. Employing the con-
straint that

∑∞
𝑖=0 𝜋𝑖 = 1 and assuming 𝜆 < 𝜇, we further obtain

𝜋0 =

( ∞∑
𝑖=0

(𝜆
𝜇

)𝑖
)−1

= 1 − 𝜆
𝜇

As a result the stationary probability distribution of the number of duplicate
genes per ancestral gene is a geometric distribution with parameter 1 − 𝜆∕𝜇.
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Assuming stationarity, we can obtain the age distribution under this model as
follows. Let 𝑇 denote the time before the present of a random duplication
and let 𝐼𝑜 be the indicator of whether the duplication is observed in an extant
genome, we have

𝐹 (𝜏) = ℙ{𝑇 < 𝜏|𝐼𝑜 = 1} =
ℙ{𝑇 < 𝜏, 𝐼𝑜 = 1}

ℙ{𝐼𝑜 = 1}

∝ ∫
𝜏

0

∞∑
𝑘=1

(
1
𝑘
𝜖(𝑡) +

(
1 − 1

𝑘

)
𝜖(𝑡)2

)
𝑘𝜆𝜋𝑘𝑑𝑡

= 𝜆
(
1 − 𝜆

𝜇

)
∫

𝜏

0
𝜖(𝑡)

(
𝜖(𝑡)

𝜇2

(𝜆 − 𝜇)2
+ 𝜖(𝑡)

𝜇
𝜇 − 𝜆

)
𝑑𝑡 (2.7)

Where 𝜖(𝑡) = (1 − 𝜖(𝑡)) is the probability that a lineage, extant at time 𝑡, sur-
vives until the present given that it evolves according to a linear birth-death
process (see eq. 2.5). Some calculus shows that

𝐹 (𝑡) =
𝜇
(
𝑒𝜆𝑡 − 𝑒𝜇𝑡

)
𝜆𝑒𝜆𝑡 − 𝜇𝑒𝜇𝑡

and the probability density function is

𝑓 (𝑡) =
𝜇(𝜆 − 𝜇)2𝑒(𝜆+𝜇)𝑡

(𝜆𝑒𝜆𝑡 − 𝜇𝑒𝜇𝑡)2
(2.8)

For 𝜆 ≪ 𝜇, 𝑓 (𝑡) ≈ 𝜇𝑒−𝜇𝑡, giving, as expected of course, an exponential age
distribution as in the approximation used in the deterministic model of Lynch
and Conery (2003). In fig. 2.4 we show simulated age distributions together
with the predicted densities. We confront the equilibrium model with the C.
elegans paranome in the next example.

Example (C. elegans BDIP). We infer parameters of the BDIP using the age
and size distribution, assuming stationarity. We consider two models, one
with the age distribution given by the plain BDIP prediction (eq. 2.8), and
another where the age distribution is assumed to be a mixture of the BDIP
equilibrium distribution and a uniform component (see below). Specifically,
the former amounts to

𝜇 ∼ Uniform(0, 100)
𝛼 ∼ Beta(1, 1)

𝑡|𝜇, 𝜆 = 𝛼𝜇 ∼iid 𝑓 (see eq. 2.8)
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Figure 2.5: Posterior predictive distribution for the C. elegans (a) age distribution and
(b) family size distribution for the linear BDIP model. The black lines/dots display the
observed data. In red the 95% uncertainty interval is shown for the posterior predictive
distribution for the linear BDIP model alone while in blue the same is shown for a
mixture of the linear BDIP age distribution (eq. 2.8) and a Uniform(0, 3) distribution
as model, with a uniform prior on the mixture proportions.

𝑥|𝛼 ∼iid Geometric(1 − 𝛼)

Where 𝑥 is the vector of gene family sizes and 𝑡 the observed duplication ages.
The mixture model is a straightforward extension of this model. Note that this
does not model the individual families explicitly, but rather the entire para-
nome under the said equilibrium assumptions. Posterior predictive distribu-
tions are shown in fig. 2.5. The basic model yields a loss rate of 1.1 (1.0, 1.1)
and duplication rate of 0.3 (0.3, 0.4) per gene per 𝐾S, whereas the mixture
model yields a loss rate of 2.6 (2.3, 3.0) and duplication rate of 0.8 (0.7, 1.0)
per gene per 𝐾S. These estimates are different, but of the same order of mag-
nitude, as the estimates reported above. □

Although mathematically convenient, this linear birth-death process is clearly
an inappropriate model of long-term gene family evolution in general. Ignor-
ing the distorting influence of whole-genome duplications, neither the geomet-
ric stationary distribution of gene family sizes, nor the exponential age distri-
bution are observed in whole-genome data sets. For small families, with ≤ 5
gene copies say, the simple linear birth-death process may provide a reason-
able model for the size distribution, perhaps salvaging the widespread usage
of related models in phylogenetic analyses of gene family evolution (see our
next chapter however for a detailed study). Nevertheless, the lack of fit of this
simple model should already prompt us to search for more realistic models
which could give us more insight in the evolutionary processes that govern
the evolution of gene families.

Three main avenues for improvement are directly suggested by visual inspec-
tion of the age and family size distributions. Firstly, the power law like dis-
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tribution of gene family sizes – witnessed by the quasi linear relationship be-
tween frequency and family size when plotted along double logarithmic axes
(fig. 2.5) – suggests that duplication and loss in a gene family does not follow
the assumption of constant rates within or across families assumed in the sim-
ple BDP model. Secondly, the observation that the 𝐾S distribution does not
decline to zero at higher𝐾S values suggests that duplicate genes may become
essential to some extent, such that they are no longer susceptible to loss at the
rate of newborn duplicates. In a model for the age distribution this can be
accounted for in an ad hoc way by assuming a mixture model with a uniform
component, as we did in ourC. elegans example above (fig. 2.5), however such
a device does not explicitly model the evolutionary causes of the phenomenon.
Recall that we effectively assumed a ‘base’ set of ancestral genes (gene fam-
ilies) that are not subject to loss (we assumed only duplicate gene copies to
be susceptible to gene loss). This is of course a simplification, as sometimes
genes from the ‘base’ set do get lost, while duplicated gene copies could adopt
functions that alleviate their redundancy that makes them susceptible to gene
loss (by, for instance, subfunctionalization or neofunctionalization). Alterna-
tively, some form of age-dependent loss, as in e.g. the model of Maere et al.
(2005), could account for this, although this would entail a steady growth of
the genome over time. Lastly, of course WGD and other large-scale events
also affect both the family size and age distribution, and accounting for these
events when relevant is of course a necessary condition for obtaining a decent
model fit. We will consider the power law issue in the next section, while the
other issues are addressed in the next chapter.

2.3.3 The power law size distribution

While the simple paranome model outlined above predicts a geometric family
size distribution, it has since long been known that gene family sizes tend to
show a power law tail (Huynen and Van Nimwegen 1998; Karev et al. 2002;
Karev, Wolf, and Koonin 2003). A discrete random variable 𝑋 follows a
power law distribution if it has a pmf of the form

ℙ(𝑋 = 𝑘) = 𝛼𝑘−𝛽

Power laws have been observed in virtually any scientific domain, and they
arise from a variety of mathematical models. Several authors have considered
models which could give rise to power law size distributions in evolutionary
genomics. In one of the earliest paper on the subject, Huynen and Van Nimwe-
gen (1998) considered a very general but rather ad hoc model in which gene
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family sizes fluctuate due to multiplicative noise. Specifically, the family size
𝑋𝑡 at time 𝑡 is assumed to be the product of𝑋𝑡−1 and 𝛼𝑡, where 𝛼𝑡 is a random
variable with some probability law, typically with mean 1. Such a model can
be shown to lead to a power law distribution for large 𝑡. The essential fea-
ture of this model is that the per-gene duplication and loss rates are correlated
within families, which in the latter model is a consequence of the magnitude
of the fluctuations growing linearly with family size.

Contrary, however, to what Huynen and Van Nimwegen (1998) claimed, there
are a number of ways by which relatively simple birth-death like processes
can give rise to power law size distributions, some of which are relevant
for genome evolutionary processes. We consider two of these, starting with
Yule’s model.

2.3.3.1 Yule’s model

Consider for instance a pure-birth process𝑋(𝑡)with𝑋 ∈ {1, 2,…} and 𝑡 > 0.
The transition probabilities of the process are characterized by the following
differential difference equations

𝑑𝑝𝑖𝑗(𝑡)
𝑑𝑡

= (𝑗 − 1)𝜆𝑝𝑖,𝑗−1(𝑡) − 𝑗𝜆𝑝𝑖𝑗(𝑡)

Which can be solved succesively to find the transient distribution at time 𝑡

𝑝𝑖(𝑡) = 𝑒−𝜆𝑡(1 − 𝑒−𝜆𝑡)𝑖−1

which is again a geometric distribution, this time with parameter 𝑒−𝜆𝑡. In
particular, if we consider𝑁 particles independently evolving through time by
a pure-birth process, and label all particles at time 𝑡 that were derived from
the same ancestral particle as members of the same family, the distribution of
family sizes 𝑋(𝑡) at time 𝑡 will be geometric.

Yule (1925) (!) considers such a pure-birth process, embedded in another pure-
birth process. While we will not have much use for it here, we shall consider
it in some more detail because of its historical significance. Specifically, he
assumes that each particle (species in Yule’s model) in the system does not
only duplicate at rate 𝜆, but also gives rise to new families (or genera in Yule’s
application) at rate 𝛾 . As a result, families in the system are of different random
ages, with the age 𝐴 of a family a random variable with an exponential law
𝑓𝐴(𝑡) = 𝛾𝑒−𝛾𝑡. Yule considers the family size distribution under this model,
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which is a compound distribution

ℙ{𝑋(𝑡) = 𝑘} = 𝔼𝐴[ℙ𝑋(𝜏) = 𝑘|𝐴 = 𝜏] (2.9)

= ∫
𝑡

0
ℙ{𝑋(𝜏) = 𝑘|𝐴 = 𝜏}𝑓𝐴(𝜏)𝑑𝜏 (2.10)

= ∫
𝑡

0

[
𝑒−𝜆𝜏 (1 − 𝑒−𝜆𝜏 )𝑘−1

][
𝛾𝑒−𝛾𝜏

]
𝑑𝜏 (2.11)

The first factor in the integral is the pmf of the geometric distribution with
parameter 𝑒−𝜆𝜏 , where 𝜏, the age of the family, itself has an exponential pdf.

For 𝑘 = 1 and 𝑡 → +∞ this can be computed as

𝜋1 = ℙ{𝑋(𝑡) = 1} = ∫
∞

0
𝛾𝑒−𝛾𝜏𝑒−𝜆𝜏𝑑𝜏 = (1 + 𝜆∕𝛾)−1

The general solution can be recursively expressed as

𝜋𝑘 =
(𝑘 − 1)(𝜆∕𝛾)
1 + 𝑘(𝜆∕𝛾)

𝑝𝑘−1, 𝑘 > 1

Which is the main result of Yule’s 1925 paper. Writing 𝜌 = 𝛾∕𝜆, the resulting
pmf can be expressed analytically as

𝜋𝑘 = 𝜌
Γ(1 + 𝜌)Γ(𝑘)
Γ(1 + 𝜌 + 𝑘)

= 𝜌B(1 + 𝜌, 𝑘)

where B is the Beta function. The resulting distribution is referred to as the
Yule-Simon distribution with parameter 𝜌 after Simon (1955) who generalized
Yule’s derivation of this probability law. For large 𝑘, we have that Γ(𝑘)∕Γ(1+
𝜌 + 𝑘) ∼ 𝑘−(1+𝜌), so that 𝜋𝑘 ≈ 𝜌Γ(1 + 𝜌)𝑘−(1+𝜌). The size distribution under
this model therefore has an approximate power law tail.

While this pure-birth model does not appear to make sense as a model of gene
family evolution by duplication and loss, note that when 𝜏 ∼ Exponential(𝛾)
we have that 𝜆𝜏 ∼ Exponential(𝛾∕𝜆) = Exponential(𝜌). In general, we have
shown that the compound distribution

𝑊 |𝜌 ∼ Exponential(𝜌)

𝑋|𝑊 ∼ Geometric(𝑒−𝑊 )

implies that 𝑋|𝜌 ∼ YuleSimon(𝜌). Note that 𝜌 is the rate of the exponen-
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Amborella Vitis Marchantia

Figure 2.6: Geometric, Yule-Simon and beta-geometric stationary distributions fitted
to observed gene family size distributions for three paranomes (for Amborella, Vitis
and Marchantia. The black dots show the observed size distribution (across all taxa),
whereas the lines show the mean frequencies and 95% posterior predictive intervals
based on 1000 simulations from the posterior predictive distribution for each model.

tial distribution (not scale). In other words, when a random variable 𝑋|𝑝 ∼
Geometric(𝑝), and 𝑝 is distributed such that − log 𝑝 ∼ Exponential(𝜌), the
marginal pmf of 𝑋 is a YuleSimon(𝜌) distribution. Recall that under the sim-
ple linear BDIPmodel derived above, the stationary distribution for the family
size 𝑋 is Geometric(1 − 𝜆∕𝜇), so that when log(1 − 𝜆∕𝜇) ∼ Exponential(𝜌),
we would obtain a Yule-Simon distribution. The latter is equivalent to assum-
ing that 𝜇∕(𝜇 − 𝜆) ∼ Pareto(𝜌, 1), which may be easier to interpret.

This suggests that when duplication and loss rates are assumed to vary across
gene families according to a fairly simple parametric model, a power law
size distribution can be obtained, and we need not invoke more complicated
BDP models to explain power law behavior (as several authors have done e.g.
Karev et al. 2002). Similar conclusions were reached in a simulation study
by Hughes and Liberles (2008), where the authors found that heterogeneity in
pseudogenization rates was sufficient for generating a power-law tail. They
did not however present the simple statistical arguments we consider here. As
expected, we find that the Yule-Simon distribution provides a much better fit
to the observed size distribution than the geometric model (fig. 2.6).

2.3.3.2 Beta-geometric distribution

A more flexible two-parameter model for rate variation across families in the
linear birth-death process, which also gives rise to a power law size distribu-
tion, is obtained when we assume that 1 − 𝜆∕𝜇 ∼ Beta(𝛼, 𝛽) (or equivalently,
𝜆∕𝜇 ∼ Beta(𝛽, 𝛼)). The resulting compound stationary distribution becomes
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a so-called beta-geometric BG(𝛼, 𝛽) distribution with pmf

𝜋𝑘 = ∫
1

0
𝜂(1 − 𝜂)𝑘−1𝑓 (𝜂; 𝛼, 𝛽)𝑑𝜂

= 1
B(𝛼, 𝛽) ∫

1

0
𝜂𝛼(1 − 𝜂)𝛽+𝑘−2𝑑𝜂

=
B(𝛼 + 1, 𝛽 + 𝑘 − 1)

B(𝛼, 𝛽)

for 𝑘 > 0 and where 𝑓 (𝜂; 𝛼, 𝛽) = B(𝛼, 𝛽)−1𝜂𝛼−1(1−𝜂)𝛽−1 is the density of the
beta distribution. The mean of this distribution is (𝛼+ 𝛽)∕𝛼, and the expected
value of 𝜆∕𝜇 across families under this model is (𝛼 + 𝛽)∕𝛽. Note that, again,
for large 𝑘, the BG distribution is approximated by a power law, in this case
𝜋𝑘 ∼ B(𝛼, 𝛽)−1Γ(𝛼 + 1)𝑘−(𝛼+1).

An alternative parameterization which is often more useful defines the BG dis-
tribution using the mean 𝜂 = 𝛼∕(𝛼 + 𝛽) and dispersion parameters 𝜁 = 𝛼 + 𝛽,
so that 1∕𝜂 is the mean family size, and the distribution approaches a geo-
metric distribution as 𝜁→ +∞. The BG distribution provides an excellent fit
to observed gene family size distributions (fig. 2.6). In addition to providing
a reasonable model for the paranome size distribution, the BG distribution
serves as an apt prior for the number of ancestral genes in a family in phylo-
genetic analyses (see later chapters). Furthermore, a fit of the BG distribution
to observed data provides information on the ratio of 𝜆∕𝜇 and the variation of
this ratio across families.

2.4 Concluding remarks and segue

We have used this short and rather incomprehensive chapter to introduce some
fundamental ideas that will be of use later, in particular birth-death process
models of gene family evolution. We already see the important tension be-
tween the short and long term evolutionary processes that frustrate our at-
tempts atmodeling genome evolution. Wewill not dwell on the single-genome
setting further in this thesis, but we note that there is still much room for im-
provement here. In particular, a tractable probabilistic variant of the model
of Maere et al. (2005) would be of considerable interest for the statistical
inference of ancient WGDs from 𝐾S age distributions, a problem which at
present remains addressed in a rather ad hocway in the literature, using for in-
stance Gaussian mixture models (see e.g. Zwaenepoel and Van de Peer 2019b;
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Tiley, Barker, and Burleigh 2018; Sensalari, Maere, and Lohaus 2021). Age-
dependent BDPs present however considerable mathematical challenges. We
shall come back to this at the end of the next chapter.

A particularly interesting avenue for developing better statistical models of
paranome evolution, possibly accounting for WGDs, would be to make use of
the theory of coalescent point processes (CPPs) (Lambert and Stadler 2013)
for modeling 𝐾S-scale gene trees for paralogous families. CPPs are random
processes formulated retrospectively (see chapter 5 for more on coalescent
processes) which are associated with BDP models, the latter being forward-
time models (i.e. describing evolution from an ancestral state to a present
state). In particular, Lambert and Stadler (2013) show how some forms of
age-dependence in BDP models lead to tractable CPPs, which may be used
as a basis for deriving the likelihood function of observed ages for such pro-
cesses. Adopting the CPP viewpoint could unlock likelihood-based inference
for more realistic BDP models using empirical age distributions, an approach
we have started to explore and hope to develop further in the future.

In the next chapter we take the BDP models to a comparative genomic set-
ting, modeling the evolution of gene family content (but not the gene trees
or age distributions explicitly) along a species phylogeny. We take up the
challenge of statistical inference of ancient WGDs from comparative genomic
data, building on the work of Rabier, Ta, and Ané (2014), and develop more
adequate (or so we hope, at least) models of gene family evolution, using the
foundations provided in the preceding paragraphs.
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3 Phylogenetic birth-death process models

In this chapter1 we shall take some of the ideas introduced in chapter 2 to
the comparative genomic setting. Specifically, we will consider birth-death
process (BDP) models of gene family evolution defined along a phylogeny
which describes the evolutionary relationships among a collection of genomes.
The goal is to learn about the processes of genome evolution by means of
statistical phylogenetic analyses of gene family content across a set of species.

The statistical problems in the present chapter have the following general form.
Consider a species tree 𝑆 with leaves (𝑆) and with branch lengths on some
suitable timescale. For some gene family, let 𝑋𝑢 with 𝑢 ∈ 𝑉 (𝑆) be a discrete
random variable denoting the number of genes in the family (the gene count)
in the (ancestral) genome associated with node 𝑢 of 𝑆. Let 𝑆𝑢 be the subtree
of 𝑆 rooted in 𝑢, and let 𝑋[𝑢] denote the random vector of gene counts at the
leaves of 𝑆𝑢, i.e. (𝑋𝑣∶𝑣 ∈ (𝑆𝑢)), assuming some suitable ordering on the
leaf set (fig. 3.1). We reserve 𝑜 as a symbol for the root node of 𝑆 and define
𝑋 ≝ 𝑋[𝑜]. 𝑋 will be referred to as a phylogenetic profile, and the 𝑋[𝑢] for
𝑢 ≠ 𝑜 as partial phylogenetic profiles. A phylogenetic BDP model of gene
family evolution is defined by the following recursive generative process:

𝑋𝑜 ∼ 𝜋(⋅)
𝑋𝑣|𝑋𝑢 = 𝑥 ∼ ℎ𝑥,𝑡𝑣 (⋅) 𝑣 ∈ 𝑉 (𝑆), 𝑣 ≠ 𝑜, 𝑢 = 𝜚(𝑣)

Where 𝜋 is some discrete distribution for the number of ancestral genes at the
root of 𝑆, 𝜚(𝑢) denotes the parent node of 𝑢, and ℎ𝑥,𝑡𝑣 is the transient distri-
bution for a BDP along branch ⟨𝑢, 𝑣⟩ of length 𝑡𝑣 when started with 𝑥 initial
genes (see chapter 2). These interdependent random variables define a prob-
abilistic graphical model with the same graph structure as 𝑆 (see chapter 1).

1This chapter freely draws from our published work in Zwaenepoel and Van de Peer (2019a),
Zwaenepoel and Van de Peer (2020), and Zwaenepoel and Van de Peer (2021) (preprint).
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1 2 0 1 1 0 0 1 2 2 1 0 4 1 1
1 2 1 1 0 0 1 1 2 2 1 1 2 1 1
1 2 1 1 1 1 1 1 2 2 1 0 2 1 1
0 2 1 0 0 0 1 1 2 2 1 0 2 1 1
1 2 1 1 1 1 1 1 2 1 1 0 2 1 1
1 2 1 1 1 1 1 1 1 2 1 0 3 0 1
1 1 1 1 0 0 0 1 2 1 1 0 2 1 1
1 2 1 1 0 0 1 1 2 1 0 0 1 1 1
0 2 1 1 0 0 0 1 2 2 1 0 3 1 1
1 2 1 1 0 0 1 1 2 2 1 0 2 1 1
1 2 1 1 0 0 1 2 2 2 1 1 2 1 2
1 2 1 1 0 0 1 1 2 2 1 0 2 1 1

Figure 3.1: Example of a collection of phylogenetic profiles, or gene count matrix, for
15 gene families from a 12 taxon species tree. Each column of the matrix represents
a phylogenetic profile, with each row corresponding to the species represented by the
aligned tip in the tree on the left. Numbers in the tree label the associated nodes, so
that in our notation, for instance, 𝑋[14] = (𝑋10, 𝑋11, 𝑋13), which for the first family in
this example is the observed partial profile (1, 1, 0).

Assuming such a phylogenetic model of gene family evolution with parameter
𝜃, our goal will be to approximate the posterior distribution

𝑝(𝜃|𝑋,𝑆) ∝
𝑁∏
𝑖=1

𝑝(𝑋(𝑖)|𝜃, 𝑆)𝑝(𝜃|𝑆)
conditional on a collection of observed phylogenetic profiles (𝑋(1),… , 𝑋(𝑁)),
in order to learn about 𝜃 and the processes of genome evolution that it is sup-
posed to model.

The rest of this chapter is organized in three parts: first we develop the statisti-
cal theory and computational tools for phylogenetic BDP models based on the
linear BD(I)P. We describe in detail the techniques for computing the phyloge-
netic likelihood of continuous-time branching process models, due to Csűrös
and Miklós (2009), on which we base our new implementation for Bayesian
statistical inference of these models in a probabilistic programming context.
We then consider the phylogenetic BDP model with whole-genome duplica-
tions of Rabier, Ta, and Ané (2014), embed it in our Bayesian framework for
modeling gene content evolution and develop a new approach for model-based
inference of ancient WGDs using reversible-jump MCMC (Zwaenepoel and
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Van de Peer 2020). Lastly, in an attempt to overcome some of the issues as-
sociated with the linear BDP model of gene family evolution, we develop and
study a model based on a multi-type branching process (Zwaenepoel and Van
de Peer 2021).

3.1 Bayesian inference for the linear BDP and variants

3.1.1 The likelihood for phylogenetic BDPs

The likelihood function 𝑝(𝑋|𝜃, 𝑆) presents significant challenges already for
fairly simple models. Recall that a general BDP is a continuous-time Markov
chain on the non-negative integers with infinitesimal rates as in eq. 2.4. We
can hence express the process in terms of its (infinite dimensional) rate matrix
(infinitesimal generator, see also chapter 1)

𝑄 = lim
Δ𝑡↓0

𝑃 (Δ𝑡) − 𝑃 (0)
Δ𝑡

=

⎡⎢⎢⎢⎢⎣
−𝜆0 𝜆0 0 …
𝜇1 −(𝜇1 + 𝜆1) 𝜆1 …
0 𝜇2 −(𝜇2 + 𝜆2) …
0 0 𝜇3 …
⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎦
Where 𝑃 (𝑡) is the transition probability matrix with entries 𝑝𝑖𝑗(𝑡). Noting that
𝑝𝑖𝑗(𝑡+Δ𝑡) =

∑
𝑘 𝑝𝑖𝑘(𝑡)[𝛿𝑘𝑗 +𝑞𝑘𝑗Δ𝑡+𝑜(Δ𝑡)]we get the Kolmogorov backward

differential equation
𝑑𝑃 (𝑡)
𝑑𝑡

= 𝑃 (𝑡)𝑄

which describes the transition probabilities in terms of the infinitesimal gen-
erator. The parallel with CTMC models with a finite state space immediately
suggests an approach for computing the likelihood function under a general
BDP. If we put an upper bound on the state space, we can compute a transition
probability matrix 𝑃 (𝑡) = exp(𝑄𝑡) = 𝐼+𝑄𝑡+ 𝑄2

2 𝑡2+… for each branch of the
species tree. This transition probability matrix can then be used to compute
the phylogenetic likelihood in the ordinary way, using the pruning algorithm,
i.e. by marginalizing over the unobserved random variables in the probabilis-
tic graphical model (e.g. fig. 3.2). While in practical applications one should
always be able to choose a reasonable bound on the state space, this approach
is nevertheless rather inelegant and can be computationally quite demanding
as well as numerically unstable (Crawford, Minin, and Suchard 2014).
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𝑋7

𝑋6

𝑋5

𝑋1 𝑋2 𝑋3 𝑋4

max 𝑌7 = 7

max 𝑌6 = 4

max 𝑌5 = 2

2 0 2 3

Figure 3.2: (Left) Probabilistic graphical model for a schematic four-taxon species
tree with relevant random variables 𝑋𝑣, 𝑣 ∈ [1..7]. The gray nodes are assumed to
be observed while the white nodes are not, i.e. the associated phylogenetic profile is
𝑋 = 𝑋[7] = (𝑋1, 𝑋2, 𝑋3, 𝑋4). (Right) Example of an observed phylogenetic profile
(2, 0, 2, 3) with the upper bound for the random variables 𝑌𝑣 (the number of ancestral
genes which leave observed descendants in (𝑆𝑣)) indicated for the internal nodes of
𝑆.

A different approach was suggested in Csűrös and Miklós (2009; see also
Csűrös 2022). The key idea there is to condition on a different random variable
while marginalizing over the possible evolutionary trajectories in the pruning
algorithm. Instead of conditioning on the ancestral gene count 𝑋𝑢 at node 𝑢,
we condition on the number of surviving lineages 𝑌𝑢 at node 𝑢, that is, the
number of lineages at node 𝑢 which leave observed descendants at the leaves
of 𝑆𝑢.

ℙ{𝑋|𝜃, 𝑆} =
∞∑
𝑘=0

ℙ{𝑋|𝑌𝑜 = 𝑘, 𝜃, 𝑆}ℙ{𝑌𝑜 = 𝑘|𝜃, 𝑆} (3.1)

The first factor, considered as a function of 𝜃, is referred to as the conditional
survival likelihood. We can recursively expand ℙ{𝑋|𝑌𝑜 = 𝑘, 𝜃, 𝑆} along
the tree, suggesting a pruning algorithm for computing the likelihood. For
instance, writing out the marginalization explicitly for fig. 3.2, we have (drop-
ping dependence on 𝑆 and 𝜃 throughout)

ℙ{𝑋|𝑌7 = 𝑘} (3.2)
= ℙ{𝑌1, 𝑌2, 𝑌3, 𝑌4|𝑌7 = 𝑘}

=
∞∑
𝑖=0

ℙ{𝑌1, 𝑌2|𝑌5 = 𝑖}ℙ{𝑌5 = 𝑖, 𝑌3, 𝑌4|𝑌7 = 𝑘}
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=
∞∑
𝑖=0

ℙ{𝑌1, 𝑌2|𝑌5 = 𝑖}
( ∞∑

𝑗=0
ℙ{𝑌5 = 𝑖, 𝑌3|𝑌6 = 𝑗}ℙ{𝑌6 = 𝑗, 𝑌4|𝑌7 = 𝑘}

)
Note however that we do not have conditional independence of child nodes
given the parent node for the 𝑌𝑢, e.g. ℙ{𝑌1, 𝑌2|𝑌5} ≠ ℙ{𝑌1|𝑌5}ℙ{𝑌2|𝑌5}
in general2. Importantly, the number of lineages 𝑌𝑢 at node 𝑢 which survive
until the present is bounded by the observed partial profile 𝑋[𝑢], so that the
infinite sums in eq. 3.1 and eq. 3.2 are actually finite and we no longer need
to artificially truncate the state space (fig. 3.2, right). While, conceptually,
conditioning on survival works for general phylogenetic BDPs, efficient com-
putation of the required transition probabilities for the conditional process, as
well as the probability ℙ{𝑌𝑜 = 𝑘|𝜃, 𝑆} that 𝑘 ancestral genes survive until the
present, relies crucially on specific properties of the linear BDP.

3.1.2 Specializing for the linear BDP

The linear BDP (see chapter 2), as a model of gene family evolution, is char-
acterized by a per-gene duplication rate 𝜆 and a per-gene loss rate 𝜇, i.e. a
general BDP with the additional constraints that 𝜆𝑖 = 𝑖𝜆 and 𝜇𝑖 = 𝑖𝜇 for 𝑖 ≥ 0.
We have seen that the linear BDP has a closed form for the transition proba-
bility 𝑝𝑖𝑗(𝑡) (eq. 2.6), so that instead of relying on matrix exponentiation, we
could compute the entries of the transition probability matrix directly. This
is the strategy adopted in the influential work of Hahn et al. (2005), among
others. While evading numerical issues associated with computing exp(𝑄𝑡),
the method still relies on a user-defined upper bound and appears not to make
optimal use of the special structure of the linear BDP, in particular the branch-
ing property which entails independent evolution in distinct lineages. Here
we show how the branching property enables efficient computation of many
important quantities associated with the process conditioned on survival.

3.1.2.1 Probability generating functions and extinction probabilities

Recall the probability generating function (pgf) for a single lineage in the lin-
ear BDP

𝑓 (𝑠, 𝑡) =
∞∑
𝑗=0

𝑝1𝑗(𝑡)𝑠𝑗 =
𝜇(𝑠 − 1) + (𝜆𝑠 − 𝜇)𝑒(𝜇−𝜆)𝑡

𝜆(𝑠 − 1) + (𝜆𝑠 − 𝜇)𝑒(𝜇−𝜆)𝑡

2To see the dependence, note for instance that 𝑌1 + 𝑌2 ≥ 𝑌5 always.
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The branching property amounts to the fact that
∑∞

𝑗=0 𝑝𝑖𝑗(𝑡)𝑠
𝑗 = 𝑓 (𝑠, 𝑡)𝑖. Con-

sider now a phylogenetic BDP for species tree 𝑆. Let 𝑓𝑢(𝑠) = 𝑓 (𝑠, 𝑡𝑢) be the
pgf for the number of descendant genes 𝑍𝑢 at node 𝑢 ∈ 𝑉 (𝑆) starting from
a single ancestral gene at the beginning of the branch leading to node 𝑢. Let
𝑔𝑢(𝑠) be the pgf for the total number of genes extant at node 𝑢. For a child
node 𝑣 of 𝑢, an argument well known from the theory of branching processes
shows that

𝑔𝑣(𝑠) =
∞∑
𝑘=0

ℙ{𝑋𝑣 = 𝑘}𝑠𝑘

=
∞∑
𝑘=0

𝑠𝑘
∞∑
𝑚=1

ℙ{𝑋𝑣 = 𝑘|𝑋𝑢 = 𝑚}ℙ{𝑋𝑢 = 𝑚}

=
∞∑
𝑚=1

ℙ{𝑋𝑢 = 𝑚}
∞∑
𝑘=0

ℙ
( 𝑚∑

𝑖=1
𝑍𝑖,𝑣 = 𝑘

)
𝑠𝑘

=
∞∑
𝑚=1

ℙ{𝑋𝑢 = 𝑚}(𝑓𝑣(𝑠))𝑚

= 𝑔𝑢(𝑓𝑣(𝑠))

Similarly, the joint pgf for the number of genes at child nodes 𝑣 and 𝑤 of 𝑢
is given by 𝑔𝑢(𝑓𝑣(𝑠)𝑓𝑤(𝑠)). This generalizes neatly to the entire tree structure.
For instance, notwithstanding a parenthetical labyrinth, we can represent the
joint pgf for the phylogenetic profile in fig. 3.2 as

𝑔𝑆 (𝐬) = 𝑔𝑆 (𝑠1, 𝑠2, 𝑠3, 𝑠4) =
∞∑

𝑘1=0
⋯

∞∑
𝑘4=0

ℙ{𝑋1 = 𝑘1,… , 𝑋4 = 𝑘4}𝑠
𝑘1
1 … 𝑠𝑘44

= 𝑔7(𝑓6(𝑓5(𝑓1(𝑠1)𝑓2(𝑠2))𝑓3(𝑠3))𝑓4(𝑠4))

Here 𝑔7(𝑠) will be the pgf of the prior distribution on the number of genes
at the root of 𝑆 (we write 𝑔𝑜(𝑠) for general trees). We write 𝑓𝑆 (𝐬) for the
associated joint pgf of the number of descendants at the leaves of 𝑆 coming
from a single ancestral gene at the root of 𝑆, so that 𝑔𝑆 (𝐬) = 𝑔𝑜(𝑓𝑆 (𝐬)).

The joint pgf allows efficient computation of many important quantities, in
particular various kinds of extinction probabilities. For instance, the proba-
bility of extinction everywhere (i.e. the observed profile is the zero profile
𝟎 = (0, 0,… , 0)) corresponds to 𝑔𝑆 (𝟎). The joint pgf for the phylogenetic pro-
cess can hence be evaluated using the pgfs for the lineage-specific branching
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processes by means of a postorder traversal, enabling the computation of ex-
tinction probabilities across the phylogeny. For instance, the probability that
a single lineage observed at node 𝑢 goes extinct in the subtree 𝑆𝑢 is simply
𝑓𝑆𝑢

(𝟎). The latter quantity plays a crucial role in phylogenetic BDPs, and we
will denote it by 𝜖𝑢. More complicated probabilities can be computed recur-
sively from the generating functions, such as the probability of extinction at
none of the leaves of 𝑆, or the marginal probability of extinction at certain
leaves (e.g. the probability of extinction everywhere except in leaf node ‘1’ is
𝑔𝑆 (1, 0, 0,… , 0), etc.).

3.1.2.2 Transition probabilities conditional on survival

The branching property further allows us to derive the transition probabilities
for the process conditional on non-extinction of a particular number of an-
cestral genes. To see this, recall that the linear BDP is characterized by the
following transition probabilities (where we assume a fixed time interval and
drop the dependence on 𝑡)

𝑝1,𝑘 =

{
𝛼 𝑘 = 0
(1 − 𝛼)(1 − 𝛽)𝛽𝑘−1 𝑘 > 0

(3.3)

With 𝛼 and 𝛽 as in eq. 2.6. Note that for 𝑘 > 1we have 𝑝1,𝑘 = 𝛽𝑝1,𝑘−1. Clearly,
such relations can only hold when different genes evolve independently. Con-
sider now a similar linear BDP, but where there is a fixed probability 𝜖 that
a descendant gene is not actually observed. One can, again using generating
function arguments which rely crucially on independence, show (Csűrös and
Miklós 2009) that the probability that a single ancestral gene will leave 𝑘 ob-
served descendants is

�̃�1,𝑘 =
∞∑
𝑗=0

(
𝑘 + 𝑗
𝑘

)
𝑝1,𝑘+𝑗𝜖

𝑗(1 − 𝜖)𝑘 =

{
𝛼′ 𝑘 = 0
(1 − 𝛼′)(1 − 𝛽′)𝛽′𝑘−1 𝑘 > 0

where

𝛼′ =
𝛼(1 − 𝜖) + (1 − 𝛽)𝜖

1 − 𝛽𝜖

𝛽′ =
𝛽(1 − 𝜖)
1 − 𝛽𝜖
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In other words, the modified process, which is a linear BDP with a fixed prob-
ability (here 𝜖) of not observing a random descendant, is again a linear BDP.
We call it the 𝜖-modified process.

From there we can derive the transition probabilities conditional on the num-
ber of surviving lineages. Let 𝑋(𝑡) be a linear BDP and define

𝑞𝑖𝑗(𝑡) = ℙ{𝑋(𝑡) = 𝑗,∀𝑘 ∈ [1..𝑖] ∶ 𝑍𝑘(𝑡) > 0|𝑋(0) = 𝑖} (3.4)

Here 𝑍𝑘(𝑡) is the random variable counting the number of descendants after
a time 𝑡 of the 𝑘th ancestral gene. In words then, 𝑞𝑖𝑗(𝑡) is the probability that
𝑖 ancestral genes all have descendants and give rise to 𝑗 genes in total after a
time 𝑡. Clearly, 𝑞𝑖,0 = 0, 𝑞1,𝑗 = 𝑝1,𝑗 and 𝑞𝑖,𝑗 = 0 for 𝑗 < 𝑖. Csűrös and Miklós
(2009) showed that, again because of independence, the 𝑞𝑖𝑗(𝑡) can be related
recursively as follows (dropping dependence on 𝑡)

𝑞𝑖𝑗 =
𝑗−𝑖+1∑
𝑘=1

𝑝1,𝑘𝑞𝑖−1,𝑗−𝑘

= 𝑝1,1𝑞𝑖−1,𝑗−1 +
𝑗−𝑖+1∑
𝑘=2

𝑝1,𝑘𝑞𝑖−1,𝑗−𝑘

= 𝑝1,1𝑞𝑖−1,𝑗−1 + 𝛽𝑞𝑖,𝑗−1

Consider now 𝑘 ancestral genes at node 𝑢 ∈ 𝑆 evolving down the branch lead-
ing to node 𝑣 of length 𝑡𝑣, and let 𝜖𝑣 be the extinction probability associated
with node 𝑣. The probability that none of the 𝑘 genes go extinct and give rise
to 𝑘+𝑗 lineages at node 𝑣which have observed descendants will be 𝑞𝑘,𝑘+𝑗(𝑡𝑣),
using the 𝛼′ and 𝛽′ associated with the 𝜖𝑣-modified process.

3.1.2.3 The phylogenetic likelihood

While these transition probabilities are not directly helpful to compute the like-
lihood, together with the extinction probabilities across the tree derived above
they enable an efficient, if somewhat complicated, algorithm for computing
the likelihood of a phylogenetic profile (Csűrös and Miklós 2009; Csűrös
2022). Firstly, note that (dropping dependence on 𝜃 and 𝑆 as before)

ℙ{𝑋|𝑌𝑜 = 𝑘} = ℙ{𝑋[𝑢], 𝑋[𝑣], 𝑌𝑜 = 𝑘|𝑋𝑜 = 𝑘}∕ℙ{𝑌𝑜 = 𝑘|𝑋𝑜 = 𝑘}
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where the denominator is (1− 𝜖𝑜)𝑘. Let𝑣 be the set of lineages extant at the
parent node of 𝑣 which leave observed descendants in 𝑆𝑣, we can simply take
this set to be {1, 2,… , 𝑘} when there are 𝑘 surviving lineages. We can derive
a recursive algorithm starting from the following decomposition

ℙ{𝑋[𝑢], 𝑋[𝑣], 𝑌𝑜 = 𝑘|𝑋𝑜 = 𝑘}

=
∑

𝐵⊂[1..𝑘]
ℙ{𝑋[𝑢], 𝑋[𝑣],𝑢 = 𝐵,𝑣 −𝑢 = 𝐵𝑐|𝑋𝑜 = 𝑘}

=
∑

𝐵⊂[1..𝑘]
ℙ{𝑋[𝑢]|𝑢 = 𝐵}ℙ{𝑋[𝑣],𝑣 −𝑢 = 𝐵𝑐|𝑢 = 𝐵}

× ℙ{𝑢 = 𝐵|𝑋𝑜 = 𝑘}

=
𝑘∑

𝑗=0
ℙ{𝑋[𝑢]|𝑌 ′

𝑢 = 𝑗}ℙ{𝑋[𝑣], 𝑌
′
𝑣 ≥ 𝑘 − 𝑗|𝑌𝑜 = 𝑘}

(
𝑘
𝑗

)
(1 − 𝜖′𝑢)

𝑗𝜖′𝑘−𝑗𝑢

Here 𝑌 ′
𝑢 is a random variable denoting the number of genes at the start of the

branch leading to node 𝑢 which have observed descendants down 𝑆𝑢, so that
𝑌 ′
𝑢 ≤ 𝑌𝑜 and 𝑌 ′

𝑢 +𝑌 ′
𝑣 ≥ 𝑌𝑜. Similarly 𝜖′𝑢 is the probability that a single lineage

extant at the start of the branch leading to node 𝑢 goes extinct down 𝑆𝑢, i.e.
𝜖′𝑢 = 𝑓𝑢(𝑓𝑆𝑢

(𝟎)). Csűrös and Miklós (2009) further show how the first two
factors can be computed recursively, using only the extinction probabilities
and transition probabilities for the conditional process derived above.

3.1.2.4 The prior distribution on the root

The second factor in eq. 3.1, the probability that 𝑘 ancestral genes at the root
leave observed descendants, does not provide further challenges for the lin-
ear BDP. Recall that we have defined the generative process in terms of a
prior distribution 𝜋 on the number of lineages 𝑋𝑜 at the root. We can express
ℙ{𝑌𝑜 = 𝑘|𝜃, 𝑆} in terms of this distribution

ℙ{𝑌𝑜 = 𝑘|𝜃, 𝑆} =
∞∑
𝑗=0

ℙ{𝑌𝑜 = 𝑘|𝑋𝑜 = 𝑘 + 𝑗, 𝜃, 𝑆}𝜋(𝑘 + 𝑗)
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This is valid for the general BDP. For the linear BDP however, applying the
branching property allows us to express this as

∞∑
𝑗=0

(
𝑘 + 𝑗
𝑗

)
𝜖𝑗𝑜(1 − 𝜖𝑜)𝑘𝜋(𝑘 + 𝑗)

Depending on the choice of 𝜋, this series may or may not have a closed form.

Since the linear BDP conditional on non-extinction has a geometric quasi-
stationary distribution, a natural choice for 𝜋 would be a geometric distribu-
tion, and this has been adopted in several studies (e.g. Rabier, Ta, and Ané
(2014), Zwaenepoel and Van de Peer (2019a), Zwaenepoel and Van de Peer
(2020)). For a geometric distribution with parameter 𝜂 (and mean 1∕𝜂), the
series simplifies to

ℙ{𝑌𝑜 = 𝑘|𝜃, 𝑆} =
∞∑
𝑗=0

(
𝑘 + 𝑗
𝑗

)
𝜖𝑗𝑜(1 − 𝜖𝑜)𝑘𝜂(1 − 𝜂)𝑘+𝑗−1

= (1 − 𝜖𝑜)𝑘
𝜂(1 − 𝜂)𝑘−1

(1 − (1 − 𝜂)𝜖𝑜)𝑘+1

The size distribution of gene families is however universally overdispersed
with respect to the geometric distribution, showing an approximate power law
tail, as we discussed in chapter 2. For the beta-geometric distribution, which
should be a more reasonable prior distribution (recall fig. 2.6), we did not find
a closed form solution. However, using the property of the Beta function that
B(𝛼, 𝛽 + 1) = B(𝛼, 𝛽) 𝛽

𝛼+𝛽 we can find

ℙ{𝑌𝑜 = 𝑘|𝜃, 𝑆} =
∞∑
𝑗=0

(
𝑘 + 𝑗
𝑗

)
𝜖𝑗𝑜(1 − 𝜖𝑜)𝑘

B(𝛼 + 1, 𝛽 + 𝑘 + 𝑗 − 1)
B(𝛼, 𝛽)

= (1 − 𝜖𝑜)𝑘
∞∑
𝑗=0

𝐴𝑘,𝑗

With the recursion relations

𝐴1,0 =
𝛼

𝛼 + 𝛽

𝐴𝑘,0 = 𝐴𝑘−1,0
𝛽 + 𝑘 − 2

𝛼 + 𝛽 + 𝑘 − 1
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𝐴𝑘,𝑗 = 𝐴𝑘,𝑗−1
𝜖𝑜(𝑘 + 𝑗)(𝛽 + 𝑘 + 𝑗 − 2)
𝑗(𝛼 + 𝛽 + 𝑘 + 𝑗 − 1)

Which allow efficient approximation of the infinite series above by some par-
tial sum sufficiently far in the series. The sum converges very rapidly, so that
in practice no more than 10 terms are needed. For both the geometric and
beta-geometric distributions, these results are easily modified if the relevant
domain is 𝑘 ≥ 0 rather than 𝑘 ≥ 1 (as is the case in the BDIP setting, see
below).

3.1.2.5 Conditioning on the sampling process

It is important to take into account sampling biases when conducting
likelihood-based statistical inference. One source of bias is that the phy-
logenetic BDP model generates all-zero profiles with non-zero probability,
whereas such profiles cannot be observed in typical comparative genomic
data sets. Let 𝐸𝑢 be the event of extinction of a family below node 𝑢 and let
𝐸𝑢 be its negation. For a phylogenetic profile 𝑦, the appropriate conditional
likelihood is then

𝑝(𝑦|𝜃, 𝑆, �̄�𝑜) =
𝑝(𝑦|𝜃, 𝑆)
1 − ℙ{𝐸𝑜}

Where ℙ{𝐸𝑜} is easily obtained using the generating function techniques for
computing extinction probabilities.

Furthermore, we often apply certain filtering steps to the data, and we should
condition the likelihood accordingly. For instance, to rule out de novo gain of
genes in arbitrary subtrees of the phylogeny, we can filter the data so that at
least one gene is present in each clade stemming from the root of the species
tree (as in e.g. Rabier, Ta, and Ané (2014) and Zwaenepoel and Van de Peer
(2019a)). Labeling the daughter nodes of 𝑜 by 𝑢 and 𝑣, the likelihood of a
profile 𝑦 conditional on the event of non extinction in both clades is then

𝑝(𝑦|𝜃, 𝑆, 𝐸𝑢 ∩ 𝐸𝑣) =
𝑝(𝑦|𝜃, 𝑆)

ℙ{𝐸𝑢 ∩ 𝐸𝑣}
=

𝑝(𝑦|𝜃, 𝑆)
1 − ℙ{𝐸𝑢} − ℙ{𝐸𝑣} + ℙ{𝐸𝑜}

Where the relevant probabilities can again be computed from the probability
generating functions.3

3Note that ℙ{𝐸𝑢} ≠ 𝜖𝑢, the latter being the probability of a single lineage extant at node 𝑢
going extinct in 𝑆𝑢, whereas the former is the probability that a family has no observed descen-
dants in 𝑆𝑢. The latter probability therefore involves also the prior on the number of lineages at
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3.1.3 Extensions for other BDPs

In Csűrös and Miklós (2009) (see also Csűrös (2022)) it is further shown how
the above results generalize readily to the birth-death immigration setting, al-
ready considered in chapter 2. In the linear BDIP, we assume a constant im-
migration rate 𝜅, so that 𝑝𝑖,𝑖+1(Δ𝑡) = (𝑖𝜆 + 𝜅)Δ𝑡 + 𝑜(Δ𝑡). The transient dis-
tribution of a linear BDIP is a negative binomial distribution, and the process
has a stationary distribution whenever 𝜆 < 𝜇. As we have shown in the pre-
vious chapter, this limiting distribution is geometric in the special case where
𝜅 = 𝜆. The linear BDIP can be used as a model of gene family evolution by
gene duplication, gene loss and horizontal gene transfer or de novo gene origin
(together referred to as ‘gene gain’). A different use for the linear BDIP was
suggested in the previous chapter: if we assume 𝜅 = 𝜆 and model the number
of excess genes in a family (i.e. the number of duplicate genes per family), we
recover a stochastic analog of the model of Lynch and Conery (2003), which
corresponds to a general BDP with 𝜇𝑖 = max{0, (𝑖− 1)𝜇} and 𝜆𝑖 = 𝑖𝜆 for the
total gene count. This model can be applied to putatively ‘essential’ gene fam-
ilies which cannot get lost without inflicting an insurmountable fitness cost.

Independence properties in probabilistic models of biological phenomena usu-
ally signal assumptions made for the sake of mathematical convenience rather
than biological or epistemic relevance. In the case of gene family evolution,
a particularly pressing issue derives from the functional roles of gene dupli-
cates. If duplicates within a family are functionally redundant to some extent,
independence and a constant per-gene loss rate do not seem very reasonable
assumptions. We address these issues in much more detail below, but we
note here that general BDPs do not necessarily have the branching property,
so that a system of 𝑘 particles will not have the same time evolution as the
sum of 𝑘 systems with a single particle. This is because in general BDPs, the
per-gene duplication or loss rate can depend on the number of genes in the
family. When the branching property does not hold, we cannot easily resort
to algorithms of the sort proposed by Csűrös andMiklós (2009). However, im-
portantly, we need not necessarily resort to the matrix exponentiation method
either. Crawford and Suchard (2012) (see also Crawford, Minin, and Suchard
(2014) and Crawford, Ho, and Suchard (2018)) showed how numerical inver-
sion of the Laplace transform of the transient distribution is a feasible strat-
egy for computing transition probabilities. Moreover, the same authors pro-
posed expectation-maximization (EM) algorithms for inference of discretely
observed BDPs. These ideas remain to be taken to the phylogenetic setting.

the root.
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1 0 1 1 2 1 1 1 2 1
0 1 1 1 1 1 0 1 1 1
1 1 1 1 2 3 0 1 2 1
1 1 1 1 2 2 1 1 3 1
1 1 1 0 1 1 1 1 2 1
1 1 1 1 2 2 1 1 1 11, 51, 5 1, 6 1, 51, 10 1, 101, 41, 11

2, 12, 1 2, 22, 3 5, 45, 35, 7 5, 8 5, 35, 8

3, 13, 0 3, 2 4, 0 4, 1 6, 26, 4 6, 5 6, 16, 5 9, 2 9, 19, 3 9, 3

7, 17, 2 7, 3 7, 0 8, 1 8, 2 8, 3 10, 1 10, 0 10, 2 11, 1 11, 2

Figure 3.3: Example of the directed acyclic graph (DAG) data structure associated
with a particular count matrix and phylogeny 𝑆, shown in the inset on the top right.
Each node in the graph represents a unique partial phylogenetic profile and is labeled
as (𝑢,max 𝑌𝑢)where the 𝑢 ∈ 𝑉 (𝑆) correspond to the node labels in 𝑆 andmax 𝑌𝑢 is the
upper bound on the number of ancestral genes at 𝑢 which have observed descendants
in 𝑆𝑢. An edge between two nodes indicates that the bottom node is a partial profile
with respect to the upper node. In this particular example, conducting dynamic pro-
gramming along the DAG reduces the number of partial likelihood evaluations from
110 for a naive algorithm to 45.

However, as we shall argue below, the general BDP may not be the most ad-
equate generalization if our goal is to develop more realistic and biologically
relevant models of gene family evolution.

3.1.4 Implementation

We implemented algorithms for computing the phylogenetic likelihood in a
flexible Julia (Bezanson et al. 2017) package called DeadBird. We imple-
mented an efficient variant of the algorithm by Csűrös and Miklós (2009)
outlined above which computes the conditional survival likelihood for a col-
lection of gene families using dynamic programming (DP) across a directed
acyclic graph (DAG) structure which summarizes the observed data (more
specifically a so-called multitree, see fig. 3.3). This dynamic programming
approach, which is akin to the approach of Pond and Muse (2004), will en-
sure that likelihood computations are only performed once for each unique
partial phylogenetic profile in the data set. This strategy can lead to signifi-
cant speedups over naive DP algorithms, although the gains are dependent on
the variability in the data. For the complete data set of which the example
in fig. 3.3 shows a tiny segment, an over ten-fold reduction in the number of
partial likelihood evaluations can be achieved in this way.

Our implementation admits the specification of phylogenetic BDP models
with branch-specific duplication, loss and gain rates; mixture models of rate
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variation across families4; various prior distributions on the ancestral gene
count and various likelihood corrections for filtering strategies (all of these
are exemplified in the next section). We also implement algorithms for sam-
pling ancestral states, enabling inference of ancestral gene family sizes and
Bayesian analysis of gene family expansion and contraction. Furthermore, our
implementation plays nicely with many other tools in the Julia scientific com-
puting ecosystem, and is, for instance, fully compatible with (forward-mode)
automatic differentiation (AD) and the Turing.jl probabilistic programming
language (Ge, Xu, and Ghahramani 2018). This allows extremely flexible
model specification, where we can embed phylogenetic BDPs in essentially
arbitrary probabilistic programs (see the next section for examples). Com-
patibility with AD systems admits the application of highly efficient and ac-
curate optimization and sampling techniques which use gradient information
(gradient descent and cognate optimizers, Hamiltonian Monte Carlo and cog-
nate samplers), enabling both maximum likelihood and Bayesian inference of
model parameters. Not only is our implementation much more flexible than
other implementations we know of, it is also quite fast, as illustrated in the
following example.

Example (CAFE comparison). We compare our implementation for statisti-
cal inference of model parameters for phylogenetic BDPs against the popular
CAFE software (De Bie et al. 2006b; Mendes et al. 2021). Assuming a model
where the duplication and loss rates across the tree are determined by a sin-
gle parameter 𝜆 (referred to as the turnover rate), we estimate 𝜆 by maximum
likelihood for a data set consisting of 1000 gene families for a nine-taxon di-
cot species tree. We obtain a MLE of �̂� = 0.282 events per 100 My using
the BFGS5 optimizer in about 2.7 seconds, whereas CAFE (v5, Mendes et al.
(2021)), which uses a zeroth-order method instead (the Nelder-Mead down-
hill simplex method), takes 1 minute and 34 seconds to arrive at �̂� = 0.275
events per 100 My. For a data set of 10000 gene families from 12 mammal
species, available from the CAFE5 GitHub repository, we obtain a MLE of
�̂� = 0.19 events per 100 My in about 70 seconds using our implementation,
while CAFE takes slightly less than 5 minutes to find the same estimate up
two two significant digits. All analyses were conducted using a single CPU.
Note that both CAFE and our implementation can make use of multiple cores
if desired. □

4Note that when the data is modeled according to a discrete mixture of phylogenetic BDPs,
the DAG structure can only be used when we marginalize over the different components.

5Broyden-Fletcher-Goldfarb-Shanno algorithm, for those who insist. This is a popular algo-
rithm to find the minimum of some function 𝑓 (𝑥), using the gradient ∇𝑓 (𝑥) and an iteratively
improved estimate of the Hessian matrix.
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3.1.5 But does it fit?

The phylogenetic linear BDP is widely used as a model of gene family evolu-
tion in evolutionary genomics, where researchers employ popular ML-based
packages such as CAFE (Hahn et al. 2005), BadiRate (Librado, Vieira, and
Rozas 2012) or Count (Csűrös 2010) to estimate duplication and loss rates
and seek to infer patterns of gene family expansion and contraction based on
the inferred model. The adequacy of the model to empirical data is however
rarely assessed. In this section, we address the question of how well the linear
BDP model does in fact fit empirical gene count data, and we use posterior
predictive simulations to address this question. The examples in this section
motivate the developments presented in the rest of this chapter.

Example (rice). We conduct Bayesian inference of gene duplication and loss
rates for a data set of six closely related rice (Oryza) species, taken from Stein
et al. (2018).6 Because these species are closely related, an assumption of
constant duplication and loss rates across the species tree may be reasonable.
After filtering out gene families which do not have at least one gene in both
clades stemming from the root, the data set consists of 30638 gene families.
As an illustration of how statistical phylogenetic BDP models can be defined
using our DeadBird library, we include a code snippet for the specification
of the phylogenetic linear BDP here:
# Load the required libraries
using DeadBird, NewickTree, Distributions, Turing
using CSV, DataFrames

# Load the gene count matrix and species tree
data = CSV.read("oryza-6taxa.csv", DataFrame)
tree = readnw(readline("oryza-6taxa.nw"))

# Construct the DAG object
dag, bound = CountDAG(data, tree)

# Define the probabilistic program
@model model1(dag, bound, tree) = begin

η ~ Beta(1,1)
ζ ~ Exponential(1)
λ ~ Exponential(0.2)

6Data sets used in our examples throughout this dissertation are listed in Appendix B.
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μ ~ Exponential(0.2)
θ = ConstantDLG(λ=λ, μ=μ, κ=zero(λ))
p = ShiftedBetaGeometric(η, ζ+1)
dag ~ PhyloBDP(θ, p, tree, bound)

end

# Sample from the posterior distribution using the NUTS sampler
chain = sample(model1(dag, bound, tree), NUTS(), 500)

The probabilistic program is defined using the Turing.jl library below @model
model1 .[...قق] The notation closely follows the usual mathematical notation
for Bayesian hierarchical models (see chapter 1). We use Exponential priors
for the rate parameters with a mean of 0.2, based on a preliminary analysis
using maximum likelihood estimation with a fixed prior distribution for the
ancestral gene count.7 ConstantDLG(λ=λ, μ=μ, κ=κ) gathers the rate param-
eters of a linear phylogenetic BDP model where the duplication, loss and gain
rates 𝜆, 𝜇 and 𝜅 are constant across the phylogeny (i.e. all branches are as-
sumed to share the same rates). ShiftedBetaGeometric(η, ζ) constructs a
BG distribution with pmf 𝜋(𝑘) for 𝑘 ≥ 1. The PhyloBDP object gathers all the
required components for the complete specification of a phylogenetic BDP,
including the tree structure, appropriate conditioning strategy and ancestral
gene count distribution (p). We here use the default conditioning strategy,
which assumes the data is filtered so that there is at least one gene in each
clade stemming from the root. Note that in this example, we do not fix the
prior distribution on the number of ancestral genes in a family, but treat the
prior parameters themselves as latent variables. We assume that 𝜁 > 1, so
that the variance of the BG distribution is bounded. We obtain a sample from
the posterior distribution using the NUTS8 algorithm (Hoffman and Gelman
2014). In tbl. 3.1 we show relevant summary statistics for the sample of the
posterior.

At a glance, posterior predictive simulations appear to indicate a reasonable fit,
however some problems are immediately apparent (fig. 3.4). In particular, the

7We note that, in this analysis, we have a very large data set so that the posterior is dominated
by the likelihood, and the parameterization of the prior distribution for the rates does not have an
appreciable influence. We cannot, however, simply resort to an improper flat prior on the positive
real line, since the posterior with a likelihood derived from the transient distribution of a linear
BDP appears to be improper in that case. We thank prof. Clement for drawing attention to this.

8For ‘No U-turn Sampler’ a HMC sampling algorithm with some additional heuristics that
make it the go-to sampler in many probabilistic programming environments. See also Ap-
pendix A.
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Table 3.1: Posterior mean, standard deviation, Monte Carlo standard error (MCSE),
effective sample size (ESS) and 2.5% and 97.5% quantiles of the marginal posterior
distribution for the four parameters in the constant rates phylogenetic linear BDP anal-
ysis of the six-taxon rice data set. Duplication and loss rates are in units of events per
gene per million years.

parameter mean std. MCSE ESS 2.5% 97.5%

𝜂 0.91 0.002 0.0001 484 0.91 0.91
𝜁 3.36 0.212 0.0097 278 3.01 3.77
𝜆 0.08 0.001 0.0001 467 0.08 0.09
𝜇 0.39 0.003 0.0001 758 0.39 0.40

O. barthii O. sativa vg japonica O. rufipogon

O. glaberrima O. nivara O. sativa vg indica

O. barthii O. sativa vg japonica O. rufipogon

O. glaberrima O. nivara O. sativa vg indica

Figure 3.4: Posterior predictive simulations for the rice data set. In gray, posterior
predictive family size distributions (log-frequency log10 𝑓𝑛 as a function of family size
𝑛) are shown for the linear phylogenetic BDP analysis with constant rates across the
phylogeny. In red, the same is shown for the BDIP model, where along the 𝑥-axis the
number of duplicate genes per family is shown. The dots mark the observed family
size distribution in each respective genome, with a dot marked in white when it falls
outside of the 95% posterior predictive interval.

frequencies for small families are not well fitted by the model. For each of the
six genomes, the number of extinct gene families is not compatible with the
posterior predictive distribution, with the observed frequency falling outside
the 95% posterior predictive interval. For four out of six genomes, the same
holds for the frequency of single-copy families. Furthermore, on average, 1.4
simulations are required to obtain a profile compatible with the filtering con-
dition. Together with the predicted number of completely extinct families per
observed family (which is 0.02), this implies that, roughly, some 11000 fam-
ilies should be filtered from the data, whereas the actual data suggests this to
be more on the order of 3000 families. Together these observations suggest
the linear BDP fits the data rather poorly. Note that predictions for the much
rarer large families tend to be compatible with the observed data. This ap-
pears largely due to the prior distribution on the ancestral gene count being
sufficiently flexible to accommodate the power law tail.
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We conducted a similar analysis but using the linear BDIP with 𝜅 = 𝜆 for
the number of duplicate genes per family (i.e. the phylogenetic BDP analog
of the Lynch and Conery (2003) model). Note that this model applies only
to families which leave observed descendants at all leaves of 𝑆 (or ‘nowhere-
extinct’ families), which amounts to 19169 gene families for the six-taxon rice
data set. The probabilistic program defining the model is:
@model model2(dag, bound, tree) = begin

η ~ Beta(1,1)
ζ ~ Exponential(1)
μ ~ Exponential(1)
λ = μ * (1 - η)
θ = ConstantDLG(λ=λ, μ=μ, κ=λ)
p = BetaGeometric(η, ζ+1)
dag ~ PhyloBDP(θ, p, tree, bound, cond=:none)

end

Here the DAG object is based on the matrix of ‘excess’ genes, so that 0 in-
dicates a single-copy state. We now use cond=:none to indicate that no like-
lihood correction is needed (there are no phylogenetic profiles with non-zero
probability that are not observed because of our filtering steps). Recall that
the stationary distribution of this model is geometric with parameter 1 − 𝜆∕𝜇,
so that by setting 𝜆 = 𝜇(1 − 𝜂), we constrain the model in such a way that the
implied stationary distribution has the same mean as the prior distribution on
the number of genes at the root. The results are summarized in tbl. 3.2.

Table 3.2: Posterior summary for the BDIP model applied to the rice data. See also
tbl. 3.1. Note that 𝜆 = (1 − 𝜂)𝜇 in this model.

parameter mean std. MCSE ESS 2.5% 97.5%

𝜂 0.89 0.002 0.0001 322 0.88 0.89
𝜁 2.01 0.138 0.0061 376 1.75 2.27
𝜇 0.74 0.012 0.0004 385 0.72 0.77
𝜆 0.08 0.001 0.0001 - 0.08 0.09

Although this analysis applies only to a subset of the data analyzed above
under the linear BDPmodel, we consider a crude comparison of the estimated
rates of gene family evolution between the two analyses, as these should be
roughly similar if our modeling assumptions (in particular the assumptions of
independent evolution of distinct families and independent evolution of gene
copies within a family) are appropriate. The duplication rate estimate is indeed
indistinguishable compared to the estimate for the ordinary linear BDP, and
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O. barthii O. sativa vg japonica O. rufipogon O. glaberrima O. nivara O. sativa vg indica

Figure 3.5: Posterior predictive simulations for the discrete mixture BDIP model ap-
plied to the six-taxon rice data set. In gray and red posterior predictive family size
distributions are shown for the ordinary BDIP and the discrete mixture respectively.
See also fig. 3.4.

the estimate for 𝜂 also corresponds closely to its analog in the linear BDP
model. Notably however, the loss rate per duplicate gene estimated for the
linear BDIP is almost double the loss rate parameter for the BDP model, and
the 𝜁 parameter decreased considerably. The latter may be a result of the
𝜂 = 1 − 𝜆∕𝜇 constraint connecting the root prior and stationary distribution.
Since the BDIP process implies a geometric stationary distribution and thus a
gradual relaxation of the power law tail to a geometric tail, the 𝜁 parameter can
‘overcompensate’ for this by increasing the overdispersion in the root family
size distribution. Posterior predictive simulations further indicate a good fit
to the observed family size distributions within individual genomes (fig. 3.4).

The results above already suggest it not to be necessary to invoke rate variation
across branches or families to explain the observed data (except perhaps for
O. sativa vg. indica). Nevertheless, for the sake of illustration, we shall now
consider rate variation across families using the following discrete mixture
model (variation across branches will be considered below):
@model model3(dag, bound, tree, K=4) = begin

η ~ Beta(1, 1)
ζ ~ Turing.FlatPos(1.)
μ ~ Turing.FlatPos(0.)
α = discretebeta(η, ζ, K)
λ = μ .* (1 .- α)
θ = [ConstantDLG(λ=λ[i], μ=μ, κ=λ[i]) for i=1:K]
p = BetaGeometric(η, ζ)
M = [PhyloBDP(θ[i], p, tree, bound, cond=:none) for i=1:K]
dag ~ MixtureModel(M)

end

Note that there are countless strategies to account for rate heterogeneity across
families, but here we again base ourselves on the beta-geometric hypothesis
as outlined in chapter 2. Furthermore, in this model we make the ‘unifor-



88

Drosophila Yeasts Primates (GO:0002376)

37 My 112 My 74 My

Figure 3.6: Top row: Geometric and beta-geometric stationary distributions fitted to
observed gene family size distributions for three data sets. The black dots show the ob-
served size distribution (across all taxa), whereas the lines show the mean frequencies
and 95% posterior predictive intervals based on 1000 simulations from the posterior
predictive distribution for both models. Bottom row: Phylogenies for the relevant data
sets.

mitarian’9 assumption that the patterns of rate heterogeneity that putatively
determine the shape of the ancestral family size distribution are the same as
the patterns of rate heterogeneity relevant for the evolutionary process within
the species tree. Specifically, we assume a fixed 𝜇 across families, and that
𝜆𝑖 = (1 − 𝑍𝑖)𝜇 for family 𝑖, where 𝑍𝑖 is a beta-distributed random variable
with mean 𝜂 and dispersion parameter 𝜁 , the same parameters as for the beta-
geometric ditribution on the ancestral family size. We approximate this model
by a discrete mixture, a popular approach for dealing with rate heterogeneity
in phylogenetic models (e.g. Yang 2006), using four rate classes in this exam-
ple. We find that accounting for rate heterogeneity across families does not
appear to lead to a significantly better fit (fig. 3.5), although, as expected, this
does lead to a slight increase in the 𝜁 parameter (𝜁 = 2.23, [2.07, 2.37] 95%
interval). □

Example (Drosophila). We study the same simple models in the context of a
9Uniformitarianism is the doctrine that the natural laws which legislate today are the same as

those which did in the past. In the context of genome evolution it refers more concretely to the
assumption that the processes and rates of genome evolution in the past were, on average, the
same as in the present (Lynch 2007). As such, the doctrine of uniformitarianism translates into a
principle for the specification of priors and sampling distributions in the application of Bayesian
statistics to evolutionary biology.
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data set consisting of 12Drosophila species (Drosophila 12 Genomes Consor-
tium 2007), extensively studied in e.g. Hahn, Han, and Han (2007), Heger and
Ponting (2007) and Stark et al. (2007). A dated species tree was downloaded
from the TimeTree database (Kumar et al. 2017) and gene families were in-
ferred using OrthoFinder (v2.4) (Emms and Kelly 2019). In these analyses,
we fix the 𝜂 and 𝜁 parameter based on a fit of the beta-geometric distribu-
tion to the non-extinct gene family size distribution (not taking into account
the phylogeny), resulting in �̂� = 0.96 and 𝜁 = 4.0 (fig. 3.6, tbl. 3.3). When
considering a data set of 12163 gene families across a subset of eight species
(applying the usual filtering strategy of discarding gene families that have no
observed descendants in one of the two clades stemming from the root) the
standard linear BDP model yields an estimated loss rate of 0.24 expected loss
events per gene per 100 My; whereas considering the set of gene families that
are retained with at least one copy across all taxa, and assuming the linear
BDIP model, we obtain a loss rate of 3.94 expected loss events per duplicated
gene per 100 My.

Table 3.3: Marginal posterior rate parameter estimates for the Drosophila, yeast and
primates data. All rates are on a scale of ‘events per gene per 100 My’. Critical lin-
ear BDP refers to the constraint that 𝜆 = 𝜇 (leading to a critical branching process)
whereas linear BDIP+B4 refers to a model with 𝜆∕𝜇 distributed across families accord-
ing to a discretized Beta distribution with 𝐾 = 4 classes. For all analyses, the prior
on the number of lineages at the root was a beta-geometric distribution with 𝜂 and 𝜁
parameters fixed to the marginal posterior mean values obtained from the stationary
distribution fit (fig. 3.6, Drosophila: 𝜂 = 0.96, 𝜁 = 4.01, yeasts: 𝜂 = 0.98, 𝜁 = 4.06,
primates: 𝜂 = 0.93, 𝜁 = 3.12).

Parameter Drosophila Yeasts Primates (GO:0002376)

Critical linear BDP
𝜆 0.19 (0.19, 0.20) 0.040 (0.038, 0.041) 0.15 (0.14, 0.15)
———————-
Linear BDP
𝜆 0.17 (0.16, 0.17) 0.022 (0.020, 0.023) 0.13 (0.12, 0.14)
𝜇 0.24 (0.23, 0.25) 0.059 (0.056, 0.062) 0.17 (0.16, 0.18)
———————-
Linear BDIP
𝜆 0.18 (0.17, 0.19) 0.016 (0.014, 0.019) 0.12 (0.11, 0.14)
𝜇 3.88 (3.66, 4.10) 1.65 (1.43, 1.88) 2.27 (2.07, 2.46)
———————-
Linear BDIP + B4
𝜆 0.16 (0.14, 0.18) 0.010 (0.007, 0.014) 0.18 (0.15, 0.22)
𝜇 3.90 (3.64, 4.20) 1.47 (1.18, 1.14) 2.49 (2.18, 2.89)

Posterior predictive simulations show again that the linear BDP does not fit the
datawell for small gene families. In contrast with the rice data set, the basic lin-
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Figure 3.7: Posterior predictive gene family size distributions for the Drosophila data.
In black the results for the linear BDP are shown while in blue and red the results for
the linear BDIP with and without rate heterogeneity across families for the nowhere-
extinct gene families are shown respectively. Taxon labels are derived from the first
three letters of the species names (fig. 3.6). See also fig. 3.4.

ear BDIP for the nowhere-extinct families now also fails to provide a decent fit.
The difference appears to be due to the timescales involved, with the estimated
loss rates high enough to result in a more or less geometric size distribution at
the leaves of the species tree despite the beta-geometric root count distribution.
However, acknowledging rate heterogeneity under the beta-geometric assump-
tion (assuming a fixed 𝜇 and using a 𝐾 = 4 class discrete approximation to a
beta distribution with unknown parameters for 1 − 𝜆∕𝜇) leads to a somewhat
improved fit with similar duplication and loss rates. (fig. 3.7, tbl. 3.3). □

Example (yeasts). Exactly the same analysis was conducted for a data set of
4855 gene families from eight yeast species (the set of species included in the
yeast gene order browser (YGOB, v7-Aug2012; Byrne andWolfe (2005)) that
did not undergo the Saccharomyces cerivisiae genome duplication) (fig. 3.6).
For this data set we inferred a dated species tree using r8s (Sanderson 2003)
under the molecular clock assumption, using the phylogeny inferred by Or-
thoFinder and a root calibration of 112 My (Beimforde et al. 2014). The es-
timated rates for this data set are markedly lower, yielding a duplication rate
on the order of 0.01 – 0.04 duplication events per gene per 100 My (tbl. 3.3).
Again a very strong difference is observed between the linear BDP and BDIP
model. Model fit is similar to the Drosophila example, with little improve-
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ment after accounting for heterogeneity across families. □

Example (primates). The same analyses were performed for a data set from
11 primate species, where we selected 1921 gene families which contain a hu-
man homolog annotated with the gene ontology (GO) term GO:0002376 (im-
mune system process). In this analysis, we exclude the human lineage from
the data so that this filtering strategy does not bias our estimates too much. Us-
ing a dated species tree downloaded from TimeTree, we obtain results roughly
similar to the Drosophila data set (tbl. 3.3), where the linear BDP model does
not fit the frequency spectrum for small families and the BDIP model predicts
a geometric tail (and hence underestimates the number of large families). Ac-
counting for rate heterogeneity across families again appears to accommodate
latter issue, and reveals a residual lack of fit presumably due to rate hetero-
geneity across lineages. In particular, the predicted size distribution for the
chimpanzee genome does not correspond well to the observed distribution,
which is presumably due to our filtering strategy based on the presence of a
homolog in the human genome. □

What these examples seem to imply is that, when dealing with ‘core’ gene fam-
ilies which do not go extinct, the ‘Lynch & Conery’-like linear BDIP some-
times fits the data quite well (as for instance in the rice example); but that
the more commonly employed linear BDP model fits the data poorly in vir-
tually all cases. The discrepancies are dependent on the genomes and their
phylogeny under consideration, as highlighted by the much greater difference
in estimated loss rates for theDrosophila, yeast and primates data compared to
the rice data, which may in part be due to the different timescales considered.
Thewidely diverging estimates and overall lack of fit render the interpretations
of the parameter estimates as rates of genome evolution vacuous.

A plausible explanation for the observed discrepancies is that gene family ex-
tinction is subject to different rates than gene loss in a multi-copy family. If
the loss rate in a single-copy state is (much) lower than the loss rate in a multi-
gene family, the 𝜇 parameter in the linear BDP will be pulled towards a value
which may be unrepresentative for either rate. The lack of fit of the linear
BDIP model for long timescales however suggests that the difference in rates
between the single-copy state and multi-copy state may not provide the full
picture. Biologically, of course, this is to be expected, since many duplicated
genes, although stably established in the genome, exhibit some functional re-
dundancy, so that the loss rate per gene should be different depending on the
distribution of gene function over members of the family, and not directly on
the number of genes in the family. We return to these problems in much more
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Figure 3.8: Bayesian inference of linear BDP models of gene family evolution for a
nine-taxon dicot data set. The left (3×3) panel shows posterior predictive gene family
size distributions for each genome for a constant rates phylogenetic linear BDP model
in gray and a phylogenetic linear BDPwith branch-specific rates (using an uncorrelated
relaxed clock prior) in red. The middle pair of plots show a detail of the posterior
predictive family size distribution (violin plots) and conserved size distribution (black
dots) for small families for quinoa and poplar. The pair of trees show the phylogeny
with branches colored according to the marginal posterior mean duplication rate 𝜆 and
loss rate 𝜇 inferred with the branch-specific rates model. The color scale goes from
blue over green to yellow.

detail later (see sec. 3.3) when we develop models of gene family evolution to
account for this.

In our final example, we consider rate variation across lineages and the impact
of ancient WGD events by studying a data set from dicotyledonous plants.

Example (dicots). We investigate a data set of 1000 gene families associated
with a nine-taxon dicot phylogeny. The 1000 gene families were randomly
sampled without replacement from a larger data set, filtered so that there is at
least one observed gene in each clade stemming from the root. We estimate a
prior distribution for the ancestral gene family size by fitting a beta-geometric
distribution to the paranomes, and based on that choose 𝜂 = 0.92 and 𝜁 = 10
for further analyses. For our phylogenetic BDP models we use a dated phy-
logenetic tree from the TimeTree database. Inspection of posterior predictive
gene family size distributions under the constant rates linear BDPmodel show
that there is likely considerable variation in duplication and loss rates across
branches of the species tree (fig. 3.8). To accommodate this, we adopt an un-
correlated relaxed log-normal duplication/loss rate clock (DL clock) model
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for rate variation across the phylogeny. Specifically we assume that

𝑟1 ∼  (log(3), 2)
𝑟2 ∼  (log(3), 2)

log 𝜆𝑖|𝑟1 ∼  (𝑟1, 𝜏) 𝑖 = 1,… , 2𝑛 − 2
log𝜇𝑖|𝑟2 ∼  (𝑟2, 𝜏) 𝑖 = 1,… , 2𝑛 − 2

where the prior choice for 𝑟1 and 𝑟2 (the mean log rates) was based on the
duplication and loss rate estimates for the constant rates model and where
𝑛 is the number of taxa. Assigning a prior for 𝜏 (the variance of the clock
model) tends to lead to very large 𝜏 estimates and numerical issues, likely due
to model violations, so we constrain rate variation across branches by setting
𝜏 = 0.1. Results for this analysis are shown in fig. 3.8 and we tabulate the rate
estimates for the tip lineages in tbl. 3.4.

Table 3.4: Duplication and loss rate estimates with 95% uncertainty intervals (UI)
under the uncorrelated relaxed clock model for the tip lineages of the nine dicot data
set (see fig. 3.8). Rates are on a scale of expected number of events per gene per billion
years (Gy).

Species 𝜆 95% UI 𝜇 95% UI

V. vinifera 2.3 (2.0, 2.5) 1.6 (1.4, 1.8)
A. thaliana 3.4 (3.0, 3.8) 1.8 (1.5, 2.0)
C. papaya 2.1 (1.8, 2.3) 1.9 (1.6, 2.2)
M. truncatula 3.7 (3.3, 4.0) 1.3 (1.1, 1.5)
P. trichocarpa 5.0 (4.7, 5.4) 1.1 (0.9, 1.2)
B. vulgaris 2.1 (1.8, 2.5) 1.6 (1.3, 2.0)
C. quinoa 12.7 (11.8, 13.6) 1.6 (1.3, 1.9)
U. gibba 2.7 (2.3, 3.0) 3.6 (3.1, 4.0)
S. lycopersicum 3.4 (3.0, 3.7) 1.2 (1.0, 1.4)

Clearly, rate variation across branches can account for some of the variation
in the data, but the fit of the linear BDP for small families remains quite poor
for a number of species (e.g. Beta vulgaris, Carica papaya, Vitis vinifera, Pop-
ulus trichocarpa and C. quinoa). Several aspects of these results should be
highlighted. Firstly, Utricularia gibba (bladderwort) is a representative of a
lineage characterized by massive genome size reduction and high gene family
turnover rates (Ibarra-Laclette et al. 2013; Carretero-Paulet et al. 2015), and
we find, as expected, strongly increased gene loss rates in this lineage relative
to other branches in 𝑆. Secondly, for poplar and quinoa, two species charac-
terized by a very well-preserved WGD signature in their genomes, we obtain
markedly increased duplication rate estimates. Despite the high duplication
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rates, in all likelihood caused by the recent WGDs affecting these genomes,
we observe a very strong lack of fit, with a much larger proportion of gene
families of size 2 than expected under the posterior (fig. 3.8). We may con-
clude that, as expected, the linear BDP model cannot accomodate the effects
of ancient WGDs. □

3.2 Modeling and inference of whole-genome duplications

Complicated phenomena, in which several causes concurring, opposing,
or quite independent of each other, operate at once, so as to produce a
compound effect, may be simplified by subducting the effect of all the
known causes, as well as the nature of the case permits, either by deduc-
tive reasoning or by appeal to experience, and thus leaving, as it were, a
residual phenomenon to be explained.10

John Herschel (1831)

As we showed in the last example of the previous section, ancient polyploidy,
when unaccounted for, presents an obvious source of model violation for phy-
logenetic BDPs as models of gene content evolution. Not only is it important
to account for ancientWGDs11 if we aim to quantify gene duplication and loss,
but also, more positively, the signatures left by ancient WGDs in comparative
genomic data sets can be harnessed to infer ancient WGDs in a phylogenetic
context by statistical means – a challenging problem of considerable interest
in the study of genome evolution, especially in plants.

Rabier, Ta, and Ané (2014) were the first to consider the statistical inference of
WGDs using a phylogenetic model of gene family evolution which accounts
for ancient WGDs, and they applied their model to gene count data and gene
trees for the Butler et al. (2009) yeast data set. The same method was used
and evaluated for a land plant data set by Tiley, Ané, and Burleigh (2016).
The model of Rabier, Ta, and Ané (2014), but with different methods, has
been used by ourselves for modeling gene family evolution and statistical in-
ference of WGDs from gene trees (Zwaenepoel and Van de Peer 2019a, see

10Also quoted in Stigler (2016), where the author takes the idea of residual (in a broad sense)
to constitute the ‘seventh pillar of statistical wisdom’.

11Somewhat inaccurately, we shall use ‘WGD’ in a colloquial sense throughout, referring to
both whole-genome duplications proper and multiplications of a higher level. One could use
‘whole-genome multiplication’, however we have been unable to adopt the habit to do so. Fur-
thermore, it is not so clear whether it is actually helpful to talk of multiplications of genomes. As
there are no molecular mechanisms to, for instance, triplicate a genome, it seems safe to say that
whatever event we talk about will be the result of one or more duplication or hybridization events.
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Figure 3.9: Diagram to illustrate the DLWGD model. Three different scenario’s for
the evolution of a single lineage within a species tree branch with a WGD node 𝑢 are
shown. Time 𝑡 goes from left to right. The time interval in which the WGD occurs and
rediploidization process completes is indicated in dark gray. The probability (under the
model) that, conditional on a single lineage reaching WGD node 𝑢, the outcome at the
end of the branch is observed is shown below each scenario, where 𝜖𝑢 is the extinction
probability for a lineage right after 𝑢. Note that in the third scenario, a WGD-derived
duplicate is lost due to the SSDL process, and not due to rediploidization.

chapter 6) and gene counts (Zwaenepoel andVan de Peer 2020). In this section
we provide an overview of the model of Rabier, Ta, and Ané (2014), hereafter
referred to as the DLWGD (duplication, loss and WGD) model, discuss the
issues associated with statistical inference ofWGDs using phylogenetic BDPs
and outline our Bayesian approach for model-based detection of WGDs in a
phylogenetic context, published in Zwaenepoel and Van de Peer (2020).

3.2.1 The DLWGD model of Rabier et al.

To bring WGDs in the phylogenetic BDP model, Rabier, Ta, and Ané (2014)
propose a simple model for a WGD event. They insert for each hypotheti-
cal WGD an additional node in the species tree, which we shall refer to as
a ‘WGD node’. Each WGD node 𝑢 is a vertex of 𝑆 at distance 𝑡𝑢 from its
parent node 𝜚(𝑢) and has outdegree 1. The DLWGD model assumes that a
collection of gene families evolves independently according to a linear BDP
process along the branches of 𝑆, but that at a WGD node, each extant lineage
in each family duplicates instantaneously (fig. 3.9). Upon duplication at the
WGD node, the resulting pair of daughter lineages is either retained in dupli-
cate with probability 𝑞, or returns to a single lineage with probability (1 − 𝑞);
and this happens independently for all lineages which pass through the WGD
node. The latter (retention) process is supposed to model the rediploidization
process12, parameterized by a single parameter 𝑞, the retention probability (or

12We here use the term rediploidization in a somewhat loose sense, as in e.g. Wolfe (2001),
as “[…] the evolutionary process by which a polyploid genome turns into a diploid one”.
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retention rate). Note that this model of a polyploidization/rediploidization cy-
cle assumes that rediploidization occurs in a negligible time interval relative
to the typical branch length of 𝑆. The model is easily extended to allow for
higher level multiplications, although in that case an additional design choice
needs to be addressed, namely whether each copy should be independently
retained with probability 𝑞, or whether for a 𝑘-fold multiplication we would
rather introduce 𝑘 − 1 retention parameters determining the probability of re-
taining 0,… , 𝑘 copies.

Themodel as stated and illustrated in fig. 3.9 describes the evolution of a single
lineagewhen passing aWGDnode. In the probabilistic graphicalmodel which
defines the phylogenetic BDP, this model then takes the form

𝑋𝑢|𝑋𝑢′ = 𝑛 ∼ 𝑛 + Binomial(𝑛, 𝑞)

where 𝑋𝑢 is the number of genes extant after rediploidization and 𝑋𝑢′ is the
number of genes extant just before the WGD associated with vertex 𝑢 (we
formally think of 𝑢′ as an additional node in the tree at a distance 0 from 𝑢
towards the root, fig. 3.9). This leads to a transition probability across the
WGD node of the Binomial form

𝑝(𝑢)𝑛,𝑛+𝑘 =

{(𝑛
𝑘

)
𝑞𝑘(1 − 𝑞)𝑛−𝑘 if 0 ≤ 𝑘 ≤ 𝑛

0 else

The transition probabilities for the process conditional on survival can be ob-
tained using the following recursive relations

𝑞(𝑢)𝑖,𝑗 = �̃�(𝑢)1,1𝑞
(𝑢)
𝑖−1,𝑗−1 + �̃�(𝑢)1,2𝑞

(𝑢)
𝑖−1,𝑗−2

𝑞(𝑢)1,1 = �̃�(𝑢)1,1 = (1 − 𝑞)(1 − 𝜖𝑢) + 2𝑞𝜖𝑢(1 − 𝜖𝑢)

𝑞(𝑢)1,2 = �̃�(𝑢)1,2 = 𝑞(1 − 𝜖𝑢)2

Where the 𝑞(𝑢)𝑖,𝑗 refer to transition probabilities conditional on survival (see
eq. 3.4 along the branch leading to node 𝑢, whereas 𝑞 (without subscript) refers
to the retention probability. The change in model structure affected by intro-
ducing aWGDnode of course affects the extinction probabilities as well. Note
that the pgf for the number of descendant genes after rediploidization of a sin-

Rediploidization is sometimes understood alternatively as the re-establishment of disomic inher-
itance after autopolyploidy, a process which is of course related to rediploidization in the former
sense.
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gle lineage going through a WGD is

𝑓𝑢(𝑠) =
∞∑
𝑘=0

ℙ{𝑋𝑢′ = 𝑘|𝑋𝑢 = 1}𝑠𝑘 = (1 − 𝑞)𝑠 + 𝑞𝑠2

So that we can still compute extinction probabilities using the pgfs along the
phylogeny as outlined above. In particular, if 𝑣 is the child node of the WGD
node, the probability that a lineage extant right before the WGD node (i.e. ex-
tant at 𝑢′) leaves observed descendants down the tree is 𝑓𝑆𝑢′

(𝟎) = 𝑓𝑢(𝑓𝑆𝑣
(𝟎)).

With these probabilities available, we can apply the algorithm of Csűrös and
Miklós (2009) to compute the conditional survival likelihood.

3.2.2 Statistical inference of WGDs from gene count data

As should already be clear by now, statistical inference of WGDs using the
DLWGD or related models boils down to a model selection problem, where
we ask questions of the sort “Does a model with a WGD on branch ⟨𝑣,𝑤⟩ fit
the data better than a model without?”. Rabier, Ta, and Ané (2014) addressed
the statistical issue using maximum likelihood inference and a likelihood ratio
test (LRT) to compare models. To test whether or not a particular gene count
matrix 𝑦 provides evidence for an ancient WGD along some branch of the
species tree, they assumed constant duplication and loss rates across the phy-
logeny, and consider two models: 0 without the WGD node of interest and1 with the WGD node. They maximize the log-likelihood for both models
with respect to the parameters

𝓁0 = max
𝜆,𝜇

𝑝0
(𝑦|𝜆, 𝜇)

𝓁1 = max
𝜆,𝜇,𝑞

𝑝1
(𝑦|𝜆, 𝜇, 𝑞)

and compute the LRT test statistic Λ = 2(𝓁1 − 𝓁0). The authors compare this
test statistic against the relevant asymptotic distribution (which is a mixture
of a Dirac mass 𝛿0 and a 𝜒2

1 distribution, due to the null hypothesis being
associatedwith 𝑞 lying on the boundary of the parameter space). The approach
generalizes readily to more complicated situations with multiple hypothetical
WGDs marked along 𝑆. Note that we have assumed a WGD to be associated
with a fixed time point along 𝑆, but of course, this is just another parameter
which could be taken up in the estimation problem.

As we showed in Zwaenepoel and Van de Peer (2019a), there are several issues



98

Figure 3.10: Example simulation showing the issue of testing the presence of WGDs
with the method of Rabier, Ta, and Ané (2014) in the presence of deviations from a
strict DL clock. (A) Species tree used for the simulation, with the test WGD marked
by the red dot. (B) Simulated count matrix. (C) Scatter plot of duplication and loss
rates, the dot marked in red marks the rates for the branch on which the hypothetical
WGD is located.

with this approach, the most prominent one being the assumption of constant
rates, or a strict duplication/loss (DL) clock, across the phylogeny. Clearly, as
soon as there is variation in duplication and loss rates across the species tree
– which should be the rule rather than the exception – this overly stringent
assumption may cause 𝑞 to actually capture an increased duplication rate or
decreased loss rate along the branch of interest relative to the other branches
in the tree. We illustrate this problem with a simulated example.

Example (LRT test for WGD in the presence of rate heterogeneity). We
simulated a data set of 1000 gene families for the nine dicot species tree (see
previous example) with branch-specific duplication and loss rates. We sim-
ulate branch-specific log-scale duplication rates 𝜆 from a  (log(1.5), 0.5)
distribution and obtain correlated loss rates by setting 𝜇𝑖 = 𝜆𝑖 + 𝑍 where
𝑍 ∼  (0, 0.5). We set the duplication rate for the branch leading to the
subtree (𝑎𝑡ℎ, 𝑐𝑝𝑎) equal to the 75% percentile of the 𝜆 vector, and the loss
rate to the 25% percentile of the 𝜇 vector. This creates a branch which has a
somewhat higher duplication rate and a somewhat lower loss rate than most
branches in 𝑆, but not in a particularly extreme way (see fig. 3.10 C). We
then apply the LRT statistic of Rabier, Ta, and Ané (2014), assuming a model
with constant duplication and loss rates across the phylogeny, to test whether
a WGD has occurred along the branch leading to (𝑎𝑡ℎ, 𝑐𝑝𝑎). We find strong
support for the WGD model, with the LRT for the hypothesis 𝑞 > 0 equal to
Λ̂ = 29.2, amounting to rejection at the 0.001 level. The associated ML rate
estimates are �̂� = 1.3, �̂� = 1.7, 𝑞 = 0.06. □
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While this is of course but a single example and may seem somewhat con-
trived, the problem is clear enough, and we refer the reader for more extensive
simulations to our work in Zwaenepoel and Van de Peer (2019a). Of course,
a retention probability of 0.06 may not seem very relevant biologically, but
note that for a well-supported WGD like the one in Saccharomyces, Rabier,
Ta, and Ané (2014) do in fact report 𝑞 = 0.07. Clearly then, rate heterogeneity
presents a challenge for this approach. If duplication and loss rates show a suf-
ficiently strong correlation with substitution rates, which would be expected if
both are largely driven by genetic drift, one could mitigate this issue by using
a phylogenetic tree with molecular branch lengths instead of a timetree, and
estimate duplication and loss rates on a molecular distance time scale (this
strategy was employed by e.g. Tasdighian et al. (2017)). Alternatively, one
could relax the assumption of constant 𝜆 and 𝜇 using independent branch rates,
fixed rate classes, or more flexible local clock models (Yoder and Yang 2000),
but this is a rather arbitrary approach which can be very sensitive to taxon
sampling, and often leads to numerical issues (Zwaenepoel and Van de Peer
2019a). Furthermore, as the principle underlying the statistical inference of
WGDs is signaling a deviation from a phylogenetic BDP model of the SSDL
process, assuming models where rates can vary arbitrarily across branches can
reduce the power to detect ancient WGDs.

A Bayesian approach proves more helpful. Assuming either a time-calibrated
or molecular species tree 𝑆, we can assume relaxed clock models similar to
those applied in molecular divergence time estimation for the evolution of the
gene duplication and loss rate across 𝑆, as we first applied in the context of
gene tree reconciliation in Zwaenepoel and Van de Peer (2019a) (see chap-
ter 6). Such an approach also allows investigating critically the impact of
assuming more or less rate variation across 𝑆 on the inference of WGDs. One
could then base inference of WGDs on an inspection of the retention proba-
bility posterior for the WGD of interest, or alternatively, mimicking the LRT
approach, compute a Bayes factor to test the hypothesis of 𝑞 = 0.

While we do not actually recommend the latter approach, as it takes the model
too seriously (i.e. it only makes sense if the linear BDP is in fact a fully ad-
equate model of the ‘background’ SSDL process, see also our discussion on
model selection in chapter 1), we did use it in Zwaenepoel and Van de Peer
(2019a) and briefly outline the approach here. Let 𝑝(𝜃, 𝑞) be the prior density
for the retention probability 𝑞 and all other parameters 𝜃 under the DLWGD
model, and let 𝑝0(𝜃) be the prior density for 𝜃 under the model without WGD.
We will typically have 𝑝(𝜃|𝑞 = 0) = 𝑝0(𝜃), in which case a result from Dickey
(1971) and Verdinelli and Wasserman (1995) shows that for observed data 𝑦
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Figure 3.11: Posterior inference for the DLWGD model analyzed in fig. 3.10 but with
an uncorrelated relaxed DL clock model. The left two plots show marginal posterior
mean branch-specific duplication and loss rate estimateswith 95%uncertainty intervals
plotted against the true rates. On the right hand side a histogram and kernel density es-
timate for the retention probability posterior 𝑞 (using a Gaussian kernel and bandwidth
of ℎ = 0.01, and using reflection at zero to correct for the boundary effect) are shown
together with a trace plot of 𝑞 during the sampling algorithm.

the Bayes factor in favor of the no-WGD model can be computed using the
Savage-Dickey density ratio

𝐾 =
𝑝(𝑞 = 0|𝑦)
𝑝(𝑞 = 0)

=
∫ 𝑝(𝑞 = 0, 𝜃|𝑦)𝑑𝜃
∫ 𝑝(𝑞 = 0, 𝜃)𝑑𝜃

For a uniform distribution on 𝑞, 𝐾 is simply the marginal posterior density
of 𝑞 at 0. For a sample from the posterior, we can approximate 𝑝(𝑞 = 0|𝑦)
by a kernel density estimate (KDE, with boundary correction) and provide an
estimate for 𝐾 . Values of log10𝐾 < −1 could then be considered as provid-
ing evidence for 𝑞 > 0. We illustrate the Bayesian approach towards analyz-
ing WGDs using gene count data and phylogenetic BDPs with relaxed clock
models using the same simulated data set as above and the dicots data set of
sec. 3.1.5.

Example (WGD and rate heterogeneity revisited). We revisit the last sim-
ulation example and analyze the same data set but now account for rate het-
erogeneity across 𝑆, assuming an uncorrelated log-normal relaxed DL clock.
Specifically, we use the following Bayesian hierarchical model

𝑟 ∼  (log(1.5), 1)
𝜏 ∼ Exponential(1)

log 𝜆𝑖|𝑟, 𝜏 ∼  (𝑟, 𝜏) 𝑖 = 1,… , 2𝑛 − 2
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Figure 3.12: Posterior inference for the nine dicot data set using a DLWGDmodel with
branch-specific duplication and loss rates. Compare with fig. 3.8.

log𝜇𝑖|𝑟, 𝜏 ∼  (𝑟, 𝜏) 𝑖 = 1,… , 2𝑛 − 2
𝑞 ∼ Beta(1, 1)

𝑦|𝜆, 𝜇, 𝑞 ∼ PhyloBDP(𝑆, 𝜆, 𝜇, 𝑞)

We obtain a sample from the posterior using the NUTS algorithm with Tur-
ing.jl. A graphical display of the posterior distribution is provided in fig. 3.11.
Most branch-specific duplication and loss rates are accurately estimated, al-
though some estimates have a large variance. The marginal posterior distribu-
tion for the retention probability 𝑞 is clearly compatible with the hypothesis
𝑞 = 0. The Savage-Dickey estimate of the Bayes factor is log10𝐾 = 0.7,
suggesting the data favors the no-WGD model. □

Example (dicots revisited). We revisit the dicot example of sec. 3.1.5, now
accounting for WGDs. Many of the tip branches of this phylogenetic tree
are known to be associated with polyploid episodes (see e.g. Van de Peer,
Mizrachi, and Marchal 2017). We construct a DLWGD model with a single
WGD located at the midpoint of each tip branch of 𝑆 and conduct inference
using the following hierarchical model

𝑟1, 𝑟2 ∼iid  (log 1.5, 2)
log 𝜆𝑖|𝑟1 ∼  (𝑟1, 𝜏) 𝑖 = 1,… , 2𝑛 − 2
log𝜇𝑖|𝑟2 ∼  (𝑟2, 𝜏) 𝑖 = 1,… , 2𝑛 − 2

𝑞𝑗 ∼ Beta(1, 1) 𝑗 = 1,… , 9
𝑦|𝜆, 𝜇, 𝑞 ∼ PhyloBDP(𝑆, 𝜆, 𝜇, 𝑞)
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Where we again set 𝜏 = 0.1. A graphical display of the posterior distribution
is shown in fig. 3.12 and parameter estimates are tabulated in tbl. 3.5.

Clearly, the model provides a much better fit to the data, and much of the
variation in duplication and loss rates in ourWGD-unaware analysis is now ex-
plained byWGD, with the inferred variation in duplication rates now very lim-
ited. We note, in passing, that the long-term duplication rate estimates appear
to be almost 10-fold lower than our crude estimates for Vitis from chapter 2.
We find no evidence for WGD along the Vitis, Beta and Carica tip branches,
which is completely in line with our expectations, as no genomic analyses
have reported large-scale duplication events for these lineages. Remarkable,
despite the massive gene loss and genome compaction in Utricularia, we do
find a retention probability markedly different from zero. Utricularia, despite
these notable features that may lead one to expect the absence ofWGD, is also
known to have undergone multiple WGD events in its relatively recent evolu-
tionary history (Ibarra-Laclette et al. 2013). Our analysis suggest that this can
still be detected statistically from gene counts despite massive gene loss (but
note that we did not investigate multiple WGDs along this branch). We find
retention probabilities significantly > 0 for Arabidopsis, Medicago, Solanum,
Populus andChenopodium, all in line with expectations from the evolutionary
genomic literature (although, as in the case of Utricularia, some may in fact
reflect multiple events). We note that although the model provides a much bet-
ter fit to observed family size distributions for lineages with very strongWGD
signatures, like quinoa and poplar, posterior predictive simulations show that
the DLWGD model, as used here, can still not perfectly account for the ob-
served data in these lineages, with for instance the number of single-copy and
extinct families in poplar not predicted accurately. This may be due to the
fixed timing of the WGD in our analysis, as well as due to fundamental limi-
tations of the linear BDP as a model of gene family evolution. □

3.2.3 Studying retention patterns using the DLWGD model

A topic which has received a lot of attention in the literature on ancient WGD
is the differential retention of WGD-derived duplicates across gene families
(Blanc and Wolfe 2004a; Maere et al. 2005; De Smet et al. 2013; Li et al.
2015; Tasdighian et al. 2017). In a pioneering study, Maere et al. (2005)
devised a birth-death like demographic model for the whole-paranome age
distribution of duplicated genes (see chapter 2) and used this model to study
the differential retention of different types of gene duplicates across putative
functional classes of gene families in A. thaliana. They find a conspicuous as-
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Table 3.5: Marginal posterior mean parameter estimates and 95% uncertainty intervals
for the tip branches of the dicot phylogeny under the DLWGD model with an uncorre-
lated relaxed DL clock. Duplication and loss rates are in events per gene per Gy. The
last column shows the log10 Bayes factor in favor of the no-WGD model, based on a
KDE of the Savage-Dickey density ratio. See also fig. 3.12. Compare with tbl. 3.4.

Species 𝜆 95% UI 𝜇 95% UI 𝑞 95% UI log10 𝐾

V. vinifera 1.4 (1.1, 1.7) 1.8 (1.6, 2.0) 0.07 (0.02, 0.12) -0.3
A. thaliana 1.3 (1.1, 1.6) 2.2 (1.9, 2.6) 0.20 (0.16, 0.24) <-3
C. papaya 1.3 (1.1, 1.6) 2.0 (1.7, 2.3) 0.02 (0.00, 0.04) 1.5
M. truncatula 1.6 (1.3, 1.9) 1.8 (1.5, 2.0) 0.30 (0.24, 0.34) <-3
P. trichocarpa 1.2 (1.0, 1.4) 2.2 (1.7, 2.7) 0.69 (0.61, 0.77) <-3
B. vulgaris 1.3 (1.1, 1.5) 1.8 (1.5, 2.1) 0.01 (0.00, 0.03) 1.5
C. quinoa 1.5 (1.3, 1.7) 3.7 (3.1, 4.3) 0.98 (0.96, 1.00) <-3
U. gibba 1.2 (1.0, 1.4) 4.3 (3.8, 4.9) 0.20 (0.15, 0.26) <-3
S. lycopersicum 1.4 (1.2, 1.7) 1.5 (1.3, 1.8) 0.22 (0.17, 0.26) <-3

sociation of certain functional classes of genes with distinct modes of duplica-
tion, suggesting that genes involved in, for instance, developmental processes
and transcriptional regulation are more likely to be retained after WGD, but
less likely to be retained after SSD, in comparison with the whole genome,
a pattern that has been termed ‘reciprocal retention’ (Freeling and Thomas
2006; Freeling 2009; Tasdighian et al. 2017). Findings in accord with theirs
have been reported in many later plant genome papers. Reciprocal retention
of protein-coding genes is generally thought to be associated with dosage-
balance constraints on the evolution of gene copy number, which arise when
a distortion of the stoichiometric balance of certain pathways or protein com-
plexes has a (strong) negative fitness effect (Birchler and Veitia 2012).

In this section, we consider two case studies, employing our Bayesian infer-
ence tools to study these types of patterns. In the first, we investigate whether
Gene Ontology (GO) functional categories can serve as predictors for the re-
tention probabilities of a gene family by using a regression approach. In the
second case study, we consider a mixture model to study reciprocal retention
patterns, in a somewhat similar vein as Tasdighian et al. (2017). Both analy-
ses presented are highly tentative, and serve mainly to illustrate the flexibility
of the Bayesian approach.

Example (regression on GO categories). We study a five-taxon subset of the
dicots data set studied above, consisting of Vitis, Arabidopsis, Carica, Popu-
lus and Medicago. We obtained the relevant subset of gene families from the
dicots data set and annotated the gene families with GO terms from the Plant
GO Slim subset, using only the ‘biological process’ and ‘molecular function’
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ontologies. To do so, we use the GO annotations for A. thaliana available in
PLAZA 4.5 (Van Bel et al. 2018), and assign a GO term to a gene family when
at least 50% of the Arabidopsis genes in the family have that GO annotation.
We further discard those GO terms that were assigned to fewer than 100 fam-
ilies of the total set. The final data set consists of 5824 gene families with 34
GO Slim terms. We record this data in a 5824 × 34 binary matrix.

Let 𝑥𝑖 be the 𝑖th row of 𝑋 (i.e. the 1 × 34 row vector of GO annotations for
family 𝑖). We consider the following regression model

𝜆 ∼ Exponential(1.6)
𝜇 ∼ Exponential(2.0)

𝑞1, 𝑞2, 𝑞3 ∼iid Beta(1, 1)
𝛽 ∼ MVN(𝟎, 𝐼34)

𝑞𝑖𝑗 = logistic
(
logit(𝑞𝑗) + 𝑥𝑖𝛽

)
𝑦𝑖|𝜆, 𝜇, 𝑞𝑖 ∼ PhyloBDP

(
𝜆, 𝜇, (𝑞𝑖,1, 𝑞𝑖,2, 𝑞𝑖,3)

)
where 𝑞𝑖,1, 𝑞𝑖,2 and 𝑞𝑖,3 are the retention probabilities in family 𝑖 for the Ara-
bidopsis, Medicago and Populus WGD nodes respectively, and where 𝛽 is a
34-dimensional column vector of regression coefficients. Note that logit(𝑥) =
log(𝑥∕(1−𝑥)) and that logistic(𝑥) = logit−1(𝑥). We obtain a sample from the
posterior using the NUTS algorithm and conduct posterior predictive simula-
tions for the family size distributions as in the above examples (fig. 3.13).

Taken at face value, our results confirm at least in part those of Maere et al.
(2005) and the many GO enrichment analyses reported in the plant genomics
literature, with GO terms such as DNA-binding transcription factor and sig-
nal transduction having a positive effect on the WGD retention probability
parameter, and terms like photosynthesis, DNA metabolic process and cell cy-
cle among those with negative effect. Other results are less congruent, with
developmental terms near the bottom of the ranking based on the regression
coefficients, and certain metabolic processes near the top. An examination
of model fit indicates that the regression model does not fit the genome-wide
observed size distributions better than a simple DLWGDmodel with constant
duplication and loss rates across the tree and a shared WGD retention proba-
bility across all families. Looking at the size distributions within functional
categories, we see that regression model sometimes fits the data better, some-
times worse, and often equally well as the simpler model, with different pat-
terns for different species and functional categories (fig. 3.13). Note that a lack
of fit for A. thaliana is expected, as due to our annotation strategy, we filtered
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Figure 3.13: GOSlim regression analysis for the five-taxon dicot set using theDLWGD
model. The left plots show the average deviation of the posterior predictive family size
distribution from the observed family size distribution (with 95% posterior predictive
intervals) for a selection of GO categories and families with a size 0 ≤ 𝑘 ≤ 6 (along
the 𝑥-axes). Samples from the posterior distributions for the regression coefficients
for each of the GO Slim categories are shown on the right, ordered by their respective
marginal posterior mean. The number in brackets indicates the number of families
with the relevant GO annotation.

out all families without A. thaliana representative from the data, but did not
condition the likelihood on this filtering step in the presented analysis. □

While suggestive, it seems premature to make any strong biological conclu-
sion from the regression analysis in the above example. In particular, the
analysis is strongly dependent on the accuracy of the functional annotation
and the aptness of the GO Slim set as an evolutionarily relevant partitioning of
biological functions. Additionally, the analysis above did not account for het-
erogeneity in DL rates across families, so that, for instance, GO terms which
tend to be associated with high duplication rates may end up with a positive
regression coefficient, although they need not be especially strongly retained
after WGD. Most importantly, even if the annotation were sound, the assump-
tion that different functional annotations contribute linearly to the retention
rate on a logit scale is of course very ad hoc. Clearly, it is one thing to look
for enrichments of GO terms in certain gene sets, but quite another to use GO
terms as linear predictors in a regression analysis. What the example does
show clearly is that substantive hypotheses of the form ‘property 𝑃 has an ef-
fect on the retention probabilities (or DL rates)’ can be assessed rather straight-
forwardly using Bayesian hierarchical models in a probabilistic programming
environment, if one succeeds to clearly formulate such hypotheses.
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Example (Reciprocal retentionmixturemodel). In Tasdighian et al. (2017),
the authors used amodel similar to the DLWGDmodel outlined above to study
reciprocal retention patterns in a phylogenetic context. Specifically, they as-
sumed a critical linear BDP (i.e. 𝜆 = 𝜇), and a fixed retention rate of 𝑞 = 1
for each WGD marked along the phylogeny. Using a species tree for 37 an-
giosperms with branch lengths on a molecular distance scale, they fitted the
model byML independently across families, assuming a single 𝜆 for each fam-
ily. The rationale of the latter study was that the class of gene families which
tend to be retained in duplicate after WGD but not SSD should be character-
ized by a small value of 𝜆 relative to the whole genome.

We consider the same five-taxon data set as in the previous example, but now
seek to study the reciprocal retention patterns that are the focus of Tasdighian
et al. (2017). To do so, we consider a rather crude model following the basic
rationale of the latter authors, assuming there are three classes of gene families:
(1) families with large retention probabilities and small DL rates, (2) families
which show no particularly ‘preferred’ mode of duplication and (3) families
with low retention probabilities and high DL rates. We note that the last class
is no essential component of the reciprocal retention theory. We translate this
into the following mixture model

log 𝜆0 ∼  (log 1.6, 1)
log𝜇0 ∼  (log 1.6, 1)

𝑞1, 𝑞2, 𝑞3 ∼iid Beta(1, 1)
𝛼1, 𝛼2 ∼ Exponential(1) 𝑎 = (−𝛼1, 0, 𝛼2)
𝛽1, 𝛽2 ∼ Exponential(1) 𝑏 = (𝛽1, 0,−𝛽2)

𝑤 ∼ Dirichlet(1, 1, 1)
𝑧𝑖|𝑤 ∼ Categorical(𝑤)
𝜆𝑗 = exp(log 𝜆0 + 𝑎𝑗)
𝜇𝑗 = exp(log𝜇0 + 𝑎𝑗)
𝑞𝑗𝑘 = logistic(logit(𝑞𝑘) + 𝑏𝑗)

𝑦𝑖|𝑧𝑖, 𝜆, 𝜇, 𝑞 ∼ PhyloBDP(𝑆, 𝜆𝑧𝑖 , 𝜇𝑧𝑖 , (𝑞𝑧𝑖,1, 𝑞𝑧𝑖,2, 𝑞𝑧𝑖,3))

This is a mixture model with three components, where the duplication rates
are 𝜆0𝑒−𝛼1 , 𝜆0 and 𝜆0𝑒𝛼2 respectively, with 𝛼𝑗 > 0, so that 𝜆1 < 𝜆2 < 𝜆3 (the
same holds for the loss rates). The retention probabilities are similarly, but
oppositely determined by the 𝛽𝑗 on a logit scale, so that 𝑞1,𝑘 > 𝑞2,𝑘 > 𝑞3,𝑘
for WGD node 𝑘. To sample from the posterior, we marginalize the like-
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lihood over the component indicator 𝑧𝑖, i.e. we compute 𝑝(𝑦𝑖|𝜆, 𝜇, 𝑞,𝑤) =∑
𝑗 𝑝(𝑦𝑖|𝑧𝑖 = 𝑗, 𝜆𝑗 , 𝜇𝑗 , 𝑞𝑗)𝑤𝑗 . This ensures that all sampled parameters are

real-valued, so that we can use a HMC sampler. After obtaining an MCMC
sample, one can easily sample a component indicator for each MCMC iterate
to obtain a posterior sample for the latter (see below).

Table 3.6: Posterior mean parameter estimates and 95% uncertainty intervals for the
reciprocal retention mixture model.

component 𝑤 𝜆 𝜇

1 0.14 (0.11, 0.18) 0.91 (0.85, 0.97) 1.01 (0.94, 1.08)
2 0.75 (0.71, 0.78) 0.92 (0.86, 0.98) 1.02 (0.94, 1.09)
3 0.11 (0.09, 0.13) 7.40 (6.57, 8.33) 8.23 (7.14, 9.36)
———– ———————– ——————– ——————-

𝑞1 (Arabidopsis) 𝑞2 (Medicago) 𝑞3 (Populus)
1 0.68 (0.59, 0.76) 0.79 (0.72, 0.86) 0.95 (0.93, 0.97)
2 0.10 (0.08, 0.12) 0.16 (0.14, 0.19) 0.50 (0.48, 0.53)
3 0.10 (0.08, 0.12) 0.16 (0.14, 0.19) 0.50 (0.47, 0.53)

In tbl. 3.6 we tabulate the posterior mean and 95% uncertainty intervals for
the relevant parameters of the three mixture components, using a sample of
5000 gene families as data set. We find that the the first two components have
the same DL rates, whereas the second and third component share the same
retention rates. The first component is associated with markedly higher reten-
tion probabilities, whereas the last component is associated with very high DL
rates. The three components have relative posterior weight of roughly 15%,
75% and 10% respectively. The model fits the observed family size distribu-
tions reasonably well (fig. 3.14), with the usual issues for small families (see
above). Clearly, this mixture model suggests that there is a relatively large
class of gene families for which a model with a (much) higher retention prob-
ability fits better, but which are otherwise associated with unexceptional DL
rates, and a smaller class of gene families for which a high DL rate model fits
the gene content patterns better, but with otherwise unexceptional retention
probabilities. It appears therefore that the signal for reciprocal retention is
rather weak in this data set, with the highly-retained gene families post-WGD
not particularly associated with lower DL rates compared to the rest of the
genome. On the other hand, a quite pronounced pattern of differential reten-
tion does appear from this analysis.

To take a closer look at the functional classes associated with the posterior
mixture components, we computed the posterior component assignment prob-
abilities for each gene family in the complete data set (𝑛 = 11884). Specifi-
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Figure 3.14: (Left) GO term representation in the posterior component assignments
for the reciprocal retention mixture model. In the left heatmap we show, for each
GO term and for each mixture component, the hypergeometric tail area for observing
the posterior expected number of genes with that term in that mixture component. In
the right heatmap we show for each term the hypergeometric tail area for observing
the posterior expected number of families with that term in each mixture component,
where a termwas assigned to a family when at least 10% of the genes in the family were
annotated with the term. The total number of genes in the data set annotated for each
term is indicated in brackets. (Right) Average deviation of the posterior predictive size
distribution from the observed size distribution, with 95% posterior predictive intervals
(as in fig. 3.13).



109

cally, for each family 𝑖, we compute

𝑝(𝑧𝑖 = 𝑗|𝑦) = ∫
𝑝(𝑦𝑖|𝑧𝑖 = 𝑗)𝑝(𝑧𝑖 = 𝑗|𝜃)∑
𝑙 𝑝(𝑦𝑖|𝑧𝑖 = 𝑙)𝑝(𝑧𝑖 = 𝑙|𝜃)𝑝(𝜃|𝑦)𝑑𝜃

≈ 1
𝑁

𝑁∑
𝑘=1

𝑝(𝑦𝑖|𝑧𝑖 = 𝑗)𝑝(𝑧𝑖 = 𝑗|𝜃(𝑘))∑
𝑙 𝑝(𝑦𝑖|𝑧𝑖 = 𝑙)𝑝(𝑧𝑖 = 𝑙|𝜃(𝑘))

where 𝜃(1),… , 𝜃(𝑁) is our sample from the posterior (for the 5000 families
subset). We then estimated for each mixture component 𝑗 and for each GO
term 𝑟 in the data set the posterior expected number of genes with the relevant
GO term in the mixture component, that is

𝑁𝑗,𝑟 =
∑
𝑔

𝟙[𝑟 ∈ GO𝑔]𝑝(𝑧𝜙(𝑔) = 𝑗|𝑦𝜙(𝑔))
where 𝜙(𝑔) is the gene family of which gene 𝑔 is a member and GO𝑔 denotes
the set of GO terms associated with gene 𝑔. We use the 𝑁𝑗,𝑟 values to com-
pute the usual hypergeometric tail area as a measure for the relative repre-
sentation of a GO term in a set of gene families. These values are shown
in fig. 3.14. We find a large number of overrepresented terms in the highly-
retained class (component 1), among which many of the usual suspects, such
asDNA-binding transcription factor, kinase activity, and several development
related terms. The second and largest component tends to be associated with
the same GO terms we found to have negative regression coefficients in the re-
gression analysis of the previous example, notably cell cycle, photosynthesis
and DNA metabolic process. The third component, which involves the small-
est number of families, shows fewer clear enrichments, although secondary
metabolic process, response to biotic stimulus and transporter activitymay be
overrepresented in this class, but not more so than in the high-retention class
(component 1). Note that some of these were found to have positive regres-
sion coefficients in our analysis above, which could indicate that in the regres-
sion analysis, the covariate-induced retention rate variation captures variation
due to heterogeneity in DL rates, rather than heterogeneity in retention after
WGD. □

Clearly, one could devise many types of mixture models along these lines to
classify gene families in clusters with similar retention characteristics, and the
one presented in the above example is but one of themany possiblemodels that
could capture potential reciprocal retention patterns. Indeed, we see again that
once the flexibility of Bayesian modeling is properly unlocked, the challenge
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lies mainly in devising good models, and less in inference.

3.2.4 Model-based detection of WGDs

An important limitation of the approach outlined above is the requirement
of formulating a set of WGD hypotheses in the phylogeny of interest a pri-
ori, i.e. before conducting the statistical analysis. Ideally, we would like to
discover putative WGDs ‘automatically’ under the DLWGD model, under
some prior on the incidence of WGDs along 𝑆. Specifically, we seek to con-
duct joint inference of branch-specific duplication and loss rates, the number
of WGDs and the locations and retention probabilities associated with these
from a phylogenetic profile matrix 𝑦. This challenging problem was tackled in
Zwaenepoel and Van de Peer (2020), where we devised an approach based on
reversible-jumpMCMC (rjMCMC) to sample from the complicated posterior
distribution over what we termed WGD configurations on 𝑆.

Let 𝜃 = (log 𝜆, log𝜇) be the branch-specific duplication and loss parame-
ters for a phylogenetic linear BDP on species tree 𝑆, so that the pair 𝜃𝑒 =
(log 𝜆𝑒, log𝜇𝑒) denotes the BDP parameter for branch 𝑒. We denote the total
tree length as 𝑇 , and assume a mapping [0, 𝑇 ] → 𝐸(𝑆)×ℝ+ associating with
each point in [0, 𝑇 ] a location along the phylogeny (i.e. a pair consisting of an
edge of 𝑆 and a time point along that edge). We use 𝜙 = {(𝑡1, 𝑞1),…(𝑡𝑘, 𝑞𝑘)}
to denote a WGD configuration for 𝑘WGDs along 𝑆, where 𝑡𝑖 ∈ (0, 𝑇 )marks
the time point of WGD 𝑖 and 𝑞𝑖 is the associated retention probability. We will
use 𝜓 as a shorthand for (𝜙, 𝜃). We will construct a MCMC sampler which
samples from

𝑝(𝜓|𝑦, 𝑆) ∝ 𝑝(𝑦|𝜃, 𝜙, 𝑆)𝑝(𝜃|𝑆)𝑝(𝜙|𝑆) (3.5)

To do so, we need two new ingredients: (1) a prior distribution for WGD
configurations 𝑝(𝜙|𝑆) and (2) a MCMC kernel to propose new WGD config-
urations 𝜙′ conditional on a current configuration 𝜙′.

3.2.4.1 Prior for WGD configurations

We use a simple and intuitive construction for the prior of 𝜙. Let 𝜛 = |𝜙|
denote the number of WGDs in the configuration, then we have the following
prior for WGD configurations:

𝜛 ∼ 𝑓𝜛(⋅)
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𝑡𝑖|𝜛 ∼ Uniform(0, 𝑇 ) 𝑖 = 1,… , 𝜛
𝑞𝑖|𝜛 ∼ Beta(𝛼, 𝛽) 𝑖 = 1,… , 𝜛

where 𝑓𝜛 is some distribution on the non-negative integers, such as a geomet-
ric or Poisson distribution. Evaluating the prior density for a WGD configura-
tion 𝜙 according to this model is straightforward.

In addition, in order to compute Bayes factors forWGDhypotheses for specific
branches, we will need the prior probability of a WGD occurring on a given
branch 𝑗. Let 𝜛𝑗 denote the random number of WGDs on branch 𝑗, the prior
probability ℙ{𝜛𝑗 = 𝑘} can be obtained from the WGD configuration prior as

ℙ{𝜛𝑗 = 𝑘} =
∞∑
𝑛=𝑘

ℙ{𝜛𝑗 = 𝑘|𝜛 = 𝑛}𝑓𝜛(𝑛)

=
∞∑
𝑛=𝑘

(
𝑛
𝑘

)( 𝑡𝑗
𝑇

)𝑘(
1 −

𝑡𝑗
𝑇

)𝑛−𝑘
𝑓𝜛(𝑛)

When 𝑓𝜛 has finite support this suffices to compute the relevant prior proba-
bilities. For a geometric prior with parameter 𝜉 on the total number of WGDs,
this further simplifies to

ℙ{𝜛𝑗 = 𝑘} =
𝜉
( 𝑡𝑗
𝑇 (1 − 𝜉)

)𝑘[
1 −

(
1 − 𝑡𝑗

𝑇 (1 − 𝜉)
)]𝑘−1

whereas for a Poisson(𝜉) prior on 𝜛 we get 𝜛𝑗 ∼ Poisson(𝜉𝑡∕𝑇 ).

3.2.4.2 Reversible-jump proposal kernels

More challenging is the task to devise suitable MCMC proposal kernels to
sample from the posterior over WGD configurations. The fundamental issue
is that different WGD configurations represent different DLWGD models pa-
rameterized by a parameter vector of varying dimension (i.e. a DLWGDmodel
for 𝑛 taxa with𝜛 = 𝑘WGDs and branch-specific rates has a 2𝑘+2𝑛−2 dimen-
sional parameter), so that constructing a suitable reversible proposal kernel
which preserves the target distribution is not straightforward. We construct a



112

forward proposal kernel 𝑃𝑓 which adds a WGD to the model

𝜓 = (𝜃, {(𝑡1, 𝑞1),…(𝑡𝑘, 𝑞𝑘)})
𝑃𝑓
←→ (𝜃′, {(𝑡1, 𝑞1),…(𝑡𝑘, 𝑞𝑘), (𝑡𝑘+1, 𝑞𝑘+1)}) = 𝜓 ′

and a reverse kernel 𝑃𝑟 which removes a WGD from the configuration. To
ensure these trans-dimensional moves preserve detailed balance, we use the
theory of Green (1995). For the forward move, we need a vector of random
numbers 𝑢 from some suitable joint density 𝑔(𝑢) such that (𝜓 ′, 𝑢′) = ℎ(𝜓, 𝑢),
where ℎ is a (non-random) invertible function and 𝑢′ are the numbers neces-
sary for the reverse move (with density 𝑔′), so that (𝜓, 𝑢) = ℎ−1(𝜓 ′, 𝑢′). The
acceptance probability for the forward move ismin{1, 𝛼(𝜓,𝜓 ′)} where (drop-
ping dependence on 𝑆)

𝛼(𝜓,𝜓 ′) =
𝑝(𝑦|𝜓 ′)𝑝(𝜃′)𝑝(𝜙′)𝑔′(𝑢′)𝑝𝑟(𝜓 ′)
𝑝(𝑦|𝜓)𝑝(𝜃)𝑝(𝜙)𝑔(𝑢)𝑝𝑓 (𝜓)

||||𝜕(𝜓 ′, 𝑢′)
𝜕(𝜓, 𝑢)

||||
where 𝑝𝑓 (𝑥) and 𝑝𝑟(𝑥) are the probabilities of executing a forward, respectively
reverse, move when in state 𝑥. Note that the last factor is the absolute value
of the determinant of the Jacobian matrix for the transformation (𝜓, 𝑢) →
(𝜓 ′, 𝑢′).

The simplest possible move adds a WGD at a uniformly random point along
the phylogeny with a random retention rate 𝑞. Let𝜛 = 𝑘, so that 𝜛′ = 𝑘+ 1,
in that case 𝑢 = (𝑢1, 𝑢2) = (𝑡𝑘+1, 𝑞𝑘+1) and 𝑢′ = () (the 0-dimensional vector),
with 𝑢1 = 𝑡𝑘+1 ∼ Uniform(0, 𝑇 ) and 𝑞𝑘+1 ∼ 𝑔2(⋅). We have (𝜙′, 𝑢′) =
ℎ(𝜙, 𝑢) = (𝜙 ∪ {(𝑡𝑘+1, 𝑞𝑘+1)}, ()). The acceptance probability simplifies to

𝛼(𝜓,𝜓 ′) = 𝛼(𝜙, 𝜙′) = Λ
𝑓𝜛(𝑘 + 1)
𝑓𝜛(𝑘)

𝑝(𝑞)
𝑔2(𝑞)

(3.6)

where Λ is the likelihood ratio. Since we expect a correlation between du-
plication and loss rates and retention probabilities in the posterior, we may
obtain more efficient proposal kernels (i.e. with higher acceptance probabili-
ties) by proposing changes to relevant duplication and loss rates when a WGD
is proposed or removed. For instance, when a WGD is introduced on branch
𝑗, it may be beneficial to decrease the duplication rate 𝜆𝑗 concomitantly. To
do so, still using the formalism of Green (1995), we simply generate 𝑢 =
(𝑢1, 𝑢2, 𝑢3) ∼ 𝑔 and let 𝜓 ′ = (𝜃′, 𝜙′) where 𝜃′ = (𝜃1,… , 𝜃′𝑗 ,… , 𝜃2𝑛−2) with
𝜃′𝑗 = (log 𝜆𝑗 − 𝑢3, log𝜇𝑗), and where 𝜙′ is as before. The reverse move re-
quires a single random variable 𝑢′3 and we take this variable to have the same
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density as 𝑢3, so that the acceptance probability becomes

𝛼(𝜓,𝜓 ′) = 𝛼(𝜙, 𝜙′)
𝑝(𝜃′𝑗|𝜃−𝑗)
𝑝(𝜃𝑗|𝜃−𝑗)

where 𝛼(𝜙, 𝜙′) is as in eq. 3.6 and 𝜃−𝑗 is the vector of branch parameters
excluding branch 𝑗. A proposal kernel which also updates 𝜇𝑗 is easily derived
using the same approach.

3.2.4.3 Implementation and application

An MCMC algorithm using the reversible jump proposals described above
was implemented to sample from the posterior density in eq. 3.5. The statisti-
cal performance on simulated and empirical data of this approach was studied
extensively in Zwaenepoel and Van de Peer (2020), and we refer the reader
to that publication for details. The conclusion of our work there still stands:
many challenges for this approach remain, both computational and statisti-
cal. Computationally, problems arise not only with regard to resources but
also the complexity of the implementation of rjMCMC algorithms. For the
method to be more flexible and useful, as well as less bug-prone, it would be
desirable to implement the reversible-jump kernels in a way compatible with
a probabilistic programming framework, so as to enable standard samplers
for within-dimensional moves and more flexible specification of hierarchical
models, but this is a considerable effort in itself. While yielding sensible rate
estimates and locating many well-known WGDs in studied data sets, the com-
bination of computational intensiveness – which together with the not-so flex-
ible implementation precludes a smooth Bayesian workflow (which would in-
volve extensive experimentation with different models, posterior predictive
simulation, etc.) – and somewhat underwhelming statistical performance per-
formance on simulated data demands renewed attention to this problem.

Example (dicots revisited). In Zwaenepoel and Van de Peer (2020), we stud-
ied the same data set for nine dicot species as in the previous examples. We
find that our inferences of the number of WGDs are sensitive to prior assump-
tions on duplication and loss rate variation across 𝑆. Duplication and loss rate
estimates are largely similar to those obtained from our analysis for a fixed
WGD configuration (sec. 3.2.2). We find strong evidence for the Arabidopsis,
poplar and quinoaWGD, but find that the results forMedicago and tomato are
dependent on the assumed DL clock prior (fig. 3.15). Contrary to the analysis
above, we now do not find support forWGD inUtricularia. It is unclear, at this
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Figure 3.15: Posterior probabilities for the number ofWGDs on each branch in the nine
dicots phylogeny (figure 3 from Zwaenepoel and Van de Peer (2020)). The branches
are identified by their respective clades, using three letter codes (Genus species) for
the species names. In red and white, two different priors on duplication and loss rate
heterogeneity across the tree are shown. Asterisks indicate the magnitude of the asso-
ciated Bayes factor in favor of the model with 𝑘 WGDs, where (∗) 0.5 < log10 𝐾 < 1,
(∗∗) 1 < log10 𝐾 < 2, and (∗∗∗) log10 𝐾 > 2. For details on the used priors and
algorithm settings, we refer to Zwaenepoel and Van de Peer (2020).

point, what is causing the different results compared to the fixed WGD config-
uration analysis in sec. 3.2.2, but we note that the fixed-dimensional analysis
performed in Zwaenepoel and Van de Peer (2020) yielded similar results as
the rjMCMC approach. The latter fixed-dimensional analysis was conducted
with a somewhat different DL clock model and a different prior distribution
on the ancestral gene count13 compared to our analysis above. We have to
defer, however, a closer analysis to future work, where we hope to study the
statistical issues underlying these discrepancies in more depth, while at the
same time improving the implementation of the rjMCMC approach. □

3.2.5 Concluding remarks

While an interesting problem from a statistical perspective, WGD inference
from gene count data may not be very ‘data-efficient’. To have gene count
data is to have genomic data, and having genomic data means that there is

13This study was conducted before our realization that the beta-geometric distribution model
serves as a more realistic and flexible prior, and we used a geometric prior with parameter derived
from the mean family size instead.
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much more information available to investigate ancientWGDs than mere gene
counts. Two such sources of information should be noted, and feature in future
chapters of this thesis. Firstly, gene sequences provide information about the
gene trees of multi-copy gene families, which provide, potentially, more fine-
grained insights in gene family evolution than mere counts. Secondly, gene
count data completely ignores the spatial structure of a genome, and with ge-
nomic data of sufficiently high quality, synteny and co-linearity information
may be much more helpful to unveil ancient WGDs.

A potentially interesting application of the methods developed in this section
which does take the latter into account would be the statistical modeling of
gene counts in microsyntenic or anchor gene families (Zhao et al. 2021).
An anchor gene family consists of homologs which share the same gene con-
text, i.e. whose neighboring genes tend to be homologous as well, so that
paralogs derived from small-scale duplications are not (ideally) within the
same anchor gene family. Duplication within an anchor family can be as-
sumed to proceed only through large-scale duplication events, such as WGD,
single-chromosome duplications or large segmental duplications (whatever
these may be). In Zhao et al. (2021), we used anchor families and associ-
ated phylogenetic profiles for the purpose of phylogenetic inference, but the
potential of this representation of genomic data for evolutionary genomics
more broadly remains nearly untapped. Assuming a model with a constant
rate (independent of family size) of duplication not due to WGD, a loss rate
linear in the family size, and WGD, we have started experimenting with the
rjMCMC approach for inference of WGDs from this type of data.

Of course, the consideration that statistical inference from gene counts may
not be a data-efficient way for the purposes of detecting ancient WGDs, does
not invalidate our concern with modeling the effect of WGDs on phylogenetic
patterns of gene family content. Statistical inference based on phylogenetic
BDPs and gene count data remains the most used approach in evolutionary
genomics for the study of gene family evolution. We have shown that WGDs
present a major source of model violation for phylogenetic linear BDPmodels
and that accounting for WGDs leads to a markedly improved fit and more bio-
logically reasonable duplication rate estimates. Our implementation of phylo-
genetic BDPs in the DeadBird library provides efficient means to fit compli-
cated (fixed-dimensional) Bayesian phylogenetic BDP models using the rich
scientific computation ecosystem in Julia. Our trans-dimensional inference
approach using rjMCMC, while promising, requires further work to live up to
its expectations.
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Importantly, as we noted in sec. 3.1.5 above, WGDs are not the only source of
model violation, and more fundamental limitations of the linear BDP remain
an important issue for modeling gene family evolution. We stress that these
are indeed limitations of the linear BDP, and are not addressed by embedding
the linear BDP in ever-more complicated hierarchical models including rate
heterogeneity across families and lineages (which is evidently also highly im-
portant), as is shown through our posterior predictive simulations. Needless
to say, better models of the SSDL process may enable more adequate model-
ing of WGD as well – as we are essentially modeling the deviation from the
SSDL process as due to WGD. Furthermore, a more rich model for the SSDL
process may also enable better models for the WGD events themselves com-
pared to the single-parameter DLWGD model of Rabier, Ta, and Ané (2014).
We deal with these challenging problems in the rest of the present chapter.

3.3 A two-type branching process model for duplication
and loss14

While ubiquitously used, the standard phylogenetic BDP models considered
above actually provide a rather awkward fit to comparative genomic data. Two
related observations make this quite clear. The first is that posterior predictive
simulations show that the linear BDP has a hard time providing a good fit to the
size distribution for small gene families. Consider for instance the simulations
for the linear BDP model in fig. 3.7. For each species in the analysis, the pre-
dicted number of single-copy families, which are the most common families
in the data, underestimates the actual frequency of single-copy gene families,
while the prediction for the frequency of gene families in zero- or two-copy
state tends to overestimate the respective observed frequency. It seems, then,
that in order for the linear BDP to explain the frequencies of the dominant
families (those in zero-, single- or two-copy state), the duplication and loss
rates are pulled towards values where they succeed at explaining these best on
average, but happen to explain none well in particular. Similar observations
hold for the rice data set in fig. 3.4.

The second, related observation, is that the Lynch & Conery-like linear
BDIP model, which can be interpreted as a linear BDP conditioned on
non-extinction, tends to provide a somewhat better fit while arriving at very
different loss rate estimates. For instance, considering the full array of gene

14This section is a slight adaptation of our preprint article in Zwaenepoel and Van de Peer
(2021).
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families across a set of eight Drosophila species, the standard linear BDP
model yields an estimated loss rate of 0.24 expected loss events per gene per
100 My; whereas considering the set of gene families that are retained with
at least one copy across all taxa, and assuming the linear BDIP (in which
these gene families cannot go extinct), a loss rate of 3.94 expected loss events
per duplicated gene per 100 My is obtained. The same discrepancy appears
when comparing loss rate estimates from the linear BDP model with crude
estimates based on age distributions of duplicated genes (Lynch and Conery
2003, chapter 2).

One of the key assumptions underlying the standard linear BDP model that is
generally violated, and which may lead to these observations, is the assump-
tion of a single and constant loss rate per gene within a family. Many gene
duplicates, although stably established in the genome, exhibit some functional
redundancy (examples abound in the molecular biological literature). When
a duplicated gene is fully or partially functionally redundant with its parental
gene, it seems likely that both copies are subject to higher gene loss rates until
either one gene of the duplicate pair is lost or has adopted a distinct func-
tion (neofunctionalization), or both genes underwent ‘complete’ subfunction-
alization (hereafter, neo- and subfunctionalization are referred to jointly as ‘x-
functionalization’). In other words, when a set of genes is (partially) function-
ally redundant, we may expect an increased per-gene loss rate 𝜇𝑟 compared to
a set of non-redundant genes with per-gene loss rate 𝜇𝑛𝑟, as in the former case
there will be weaker purifying selection against pseudogenes (in the case of
full redundancy for instance, a null-mutant will be effectively neutral (Walsh
2003)). This however induces non-independence among distinct genes in a
family, because when one copy in a functionally redundant gene pair gets lost,
the loss rate of the retained copy will drop back to 𝜇𝑛𝑟. This contrasts with
the commonly employed BDPmodels which obey the branching property that
distinct genes evolve independently. This non-independence represents a se-
rious obstacle for developing more accurate stochastic models of gene family
evolution.

In this section, we start by formalizing a model of gene family evolution which
deals with functional redundancy in line with the informal model outlined
above. We then develop an alternative model of gene family evolution based
on a two-type continuous-time branching process to approximate the stochas-
tic evolution of gene families under such a ‘redundancy-aware’ model, while
retaining the independence assumption (branching property) that keeps our
models tractable. We conduct statistical inference for our new model in a phy-
logenetic context, and discuss the implications of our results for long-term
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Figure 3.16: Schematic representation of the state space of the continuous-time
Markov chain induced by the duplication-loss-functionalization model. A state is rep-
resented by a vector 𝑥 with 𝐾 = 𝑘 entries (the number of functions coded for by the
family) with 𝑍 =

∑
𝑖 𝑥𝑖 the total family size. Teal edges represent duplication events,

orange edges loss events for redundant genes, gray edges loss of non-redundant genes
and pink edges 𝑥-functionalization ‘events’. States which are indistinguishable for par-
ticular transitions are grouped by a box with respect to these transitions (e.g. duplica-
tion from state 𝑥 = (1, 1, 1) yields (2, 1, 1), (1, 2, 1) and (1, 1, 2)with equal probability).

evolutionary dynamics of gene content and the evolutionary genetics of gene
duplication.

3.3.1 Redundancy-aware models of gene family evolution

3.3.1.1 Duplication-loss-functionalization

We first describe an idealized duplication-loss-functionalization (DLF) model
with non-independent evolution of gene copies. We assume a gene family
of 𝑛 genes is partitioned in a random number 𝐾 ≤ 𝑛 of functional classes,
and for 𝐾 = 𝑘 we represent a gene family at time 𝑡 as the length 𝑘 array of
gene counts in each functional class𝑋(𝑡) = [𝑋1(𝑡), 𝑋2(𝑡),… , 𝑋𝑘(𝑡)], 𝑋𝑖(𝑡) >
0, 𝑖 ≤ 𝑘. An extinct gene family is represented by the empty array. The total
gene family size is denoted by 𝑍(𝑡) =

∑𝑘
𝑖=1𝑋𝑖(𝑡). We assume birth-death

dynamics, i.e. transitions increment or decrement𝑍(𝑡) by at most one unit, and
we assume that all genes duplicate at rate 𝜆. With respect to the loss dynamics,
we assume that genes in a functional class 𝑖 with 𝑋𝑖 > 1 suffer loss at rate 𝜇𝑟
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per gene (loss of a redundant copy), whereas genes in a single-copy functional
class suffer loss at rate 𝜇𝑛𝑟 (loss of a non-redundant copy), an event which
leads to a decrease in the number of functional classes in the family. Lastly,
we assume that for each class 𝑖 for which𝑋𝑖 > 1, genes shift to a new, not yet
existing functional class at rate 𝜈 per gene, decrementing𝑋𝑖 and increasing the
number of functional classes in the family (neo- or subfunctionalization). Note
that the latter event does not affect 𝑍(𝑡). The state space for the CTMC 𝑋(𝑡)
is illustrated in fig. 3.16. While this model does not admit efficient statistical
inference (as far as we are aware), it is straightforward to simulate from using
standard techniques.

3.3.1.2 Quasi birth-death processes

Two approaches for symplifying the DLF model come quite naturally. Firstly,
the scheme in fig. 3.16 brings to mind so-called (level-dependent) quasi birth-
death (QBD) processes, which can be seen as bivariate Markov chains with
two types of transitions – transitions between levels and transitions within a
level (Latouche and Ramaswami 1999). The infinitesimal generator of a QBD
can be written in block matrix form as

𝑄 =

⎡⎢⎢⎢⎣
𝐿(0) 𝐵(0) 0 0 …
𝐷(1) 𝐿(1) 𝐵(1) 0 …
0 𝐷(2) 𝐿(2) 𝐵(2) …
⋮ ⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎦
Where 𝐿(𝑖) is the rate matrix for the birth-death process within level 𝑖, 𝐷(𝑖) is
the matrix of transition rates between the states of level 𝑖 and level 𝑖 − 1 and
𝐵(𝑖) is the matrix of transition rates between the states of level 𝑖 and 𝑖+1. The
QBD is called level-independent (sometimes ‘homogeneous’, e.g. Latouche
and Ramaswami (1999)) when 𝐿(𝑖), 𝐷(𝑖) and 𝐵(𝑖) are not dependent on 𝑖 for
𝑖 > 0, and level-dependent otherwise. QBD processes have been studied quite
extensively in queueing theory, and a number of techniques have been devel-
oped for their stochastic analysis, although work related to statistical inference
for such models is scarce. We are unaware of any applications in biology.

More concretely, as a model of gene family evolution, the state (𝐾(𝑡), 𝑍(𝑡))
under the DLF model evolves according to a QBD process, although not a
particularly tractable one (it is level-dependent, with a rather complicated in-
finitesimal generator). Here, the number of functions 𝐾 corresponds to the
‘level’ of the QBD and we have the usual linear BDP duplication/loss dynam-
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Figure 3.17: The two-type duplication-loss model. (A) Illustration of the possible
events and their rates for type 1 (gray circles) and type 2 (yellow cirles) genes. (B)
State space of the associated continous-time Markov chain. Each node represents a
state (𝑋1, 𝑋2), where 𝑋1 and 𝑋2 are the numbers of ‘type 1’ and ‘type 2’ genes re-
spectively. Non-zero instantaneous transition rates are marked along the edges, with
different colors for different evolutionary events.

ics within a level, i.e. for fixed 𝐾 , whereas transitions between levels model
gain and loss of function ‘events’, or, to be more specific, 𝑥-functionalization
and loss of a non-redundant gene respectively. While the QBD process in-
duced by the DLF model may be too complicated to work with, other more
tractable QBDmodels derived from it could yield useful models for gene fam-
ily evolution.

3.3.1.3 Multi-type branching processes

Alternatively, wemay conceive of a gene family as consisting ofmultiple types
of genes which evolve independently according to different stochastic laws. In
particular, we consider a model with two types of genes, ‘type 1’ genes which
are lost at a low rate, and ‘type 2’ genes which are associated with high loss
rates. In this way, we obtain a two-type continuous-time branching process
𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡)) ∈ ℕ × ℕ, where 𝑋1(𝑡) and 𝑋2(𝑡) denote the number of
‘type 1’ and ‘type 2’ genes at time 𝑡 respectively. We can then think of such a
family as consisting of𝑍(𝑡) = 𝑋1(𝑡)+𝑋2(𝑡) genes, coding for𝑋1(𝑡) functions.
We allow for four types of events: gene duplication at rate 𝜆 per gene, loss of
a type 1 gene at rate 𝜇1 per type 1 gene, loss of a type 2 gene at rate 𝜇2 per
type 2 gene and a conversion of a type 2 to a type 1 gene (𝑥-functionalization)
at a rate 𝜈 per type 2 gene. The stochastic evolution of the process is thus
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determined by the rate parameters 𝜃 = (𝜆, 𝜇1, 𝜇2, 𝜈) in the following way

𝑝𝑖𝑗(𝑘, 𝑙,Δ𝑡) = ℙ{𝑋(𝑡 + Δ𝑡) = (𝑘, 𝑙)|𝑋(𝑡) = (𝑖, 𝑗)}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑖 + 𝑗)𝜆Δ𝑡 + 𝑜(Δ𝑡) 𝑘 = 𝑖, 𝑙 = 𝑗 + 1
𝑖𝜇1Δ𝑡 + 𝑜(Δ𝑡) 𝑘 = 𝑖 − 1, 𝑙 = 𝑗
𝑗𝜇2Δ𝑡 + 𝑜(Δ𝑡) 𝑘 = 𝑖, 𝑙 = 𝑗 − 1
𝑗𝜈Δ𝑡 + 𝑜(Δ𝑡) 𝑘 = 𝑖 + 1, 𝑙 = 𝑗 − 1
1 − ((𝑖 + 𝑗)𝜆 + 𝑖𝜇1 + 𝑗(𝜇2 + 𝜈))Δ𝑡 + 𝑜(Δ𝑡) 𝑘 = 𝑖, 𝑙 = 𝑗
𝑜(Δ𝑡) else

(3.7)

for 𝑖, 𝑗, 𝑘, 𝑙 ≥ 0. The process is a bivariate birth-death process and is Marko-
vian (see fig. 3.17 for a graph representation of the state space). It is also a
QBD, although this is not a particularly helpful characterization of the process.

As a model of gene family evolution by gene duplication and loss, 𝑋1(𝑡) de-
notes the number of ‘base’ genes in the family, while𝑋2(𝑡) denotes the number
of ‘excess’ genes in the family for which the eventual fate (non-, neo- or sub-
functionalization) is yet to be determined at time 𝑡. The model defined above
assumes that all genes duplicate at the same per-gene rate 𝜆 and that the fate
of a type 2 gene is resolved after an exponentially distributed time with mean
𝜇2+𝜈, with the probability of nonfunctionalization being 𝜇2∕(𝜇2+𝜈) and the
probability of sub- or neofunctionalization 𝜈∕(𝜇2+ 𝜈) (turning an excess gene
into a base gene). We further assume type 1 genes are removed with rate 𝜇1.
Throughout we assume {𝜇1, 𝜆, 𝜈} < 𝜇2. We refer to this model as the ‘two-
type duplication-loss (DL) model’. Note that for 𝜇1 = 𝜈 = 0, and 𝑋1(0) = 1,
we obtain the linear BDIP model for non-extinct families considered above.

Importantly, because of the independence assumption in the latter approach,
𝜇2 cannot be directly interpreted as the rate of gene loss of a functionally
redundant gene 𝜇𝑟. To see this, consider a state such as ‘four genes coding
for a single function’. In the DLF model, this state is represented as [4] while
in the two-type branching process it would be represented as (1, 3). All four
genes are functionally redundant in this case, and under the DLF model we
would have a total loss rate 4𝜇𝑟 where 𝜇𝑟 is the loss rate for a functionally
redundant gene. Instead in the branching process model, the total rate of gene
loss will be 𝜇1 + 3𝜇2, so that when 𝜇1 ≪ 𝜇2 the rate of loss per redundant
gene is ≈ 3𝜇2∕4. Under the two-type model the rate of gene loss per excess
gene 𝜇2 is constant for different family sizes, while the rate of gene loss per
redundant gene increases with increasing number of excess genes per base



122

gene, approximately equaling 𝜇2(𝑛 − 1)∕𝑛 for a group of 𝑛 redundant genes.

3.3.1.4 General BDPs?

We have already defined the general BDP as a birth-death process with arbi-
trary state-dependent duplication and loss rates 𝜆𝑖 and 𝜇𝑖 above (chapter 2).
A natural question that emerges is whether such a general BDP, or at least a
less restrictive BDP than the linear one, could yield a reasonable model of
gene family evolution that can deal with loss rate heterogeneity within gene
families. Although such a general BDP would evidently provide an improved
fit to gene count data, it would not admit a straighforward interpretation as a
model of gene family evolution, in contrast with the models considered above.
The essential difference is of course that the QBD and multi-type models in-
troduce a latent variable which models the evolution of gene function within a
family, and on which loss rates depend, whereas a general BDP does no such
thing. For a general BDP model, a gene family of 𝑛 genes will always have
the same exponential lifetime distribution, and the loss rate 𝜇𝑛 can only be
interpreted as ‘the rate of loss in a family of size 𝑛’, which does not appear to
be very meaningful, and would depend on the timescale and species tree with
respect to which gene families are defined. On the other hand, in the case of a
QBD process the lifetime distribution depends on the level random variable,
while for the two-type process it depends on the partitioning of the 𝑛 family
members in type 1 and type 2 genes, and the rate parameters retain in both
cases a biologically meaningful interpretation.

3.3.2 Inference for the two-type phylogenetic BDP

Likelihood-based inference of model parameters from comparative genomic
data requires that we can efficiently compute transition probabilities under the
model. Neither the QBD models nor multi-type branching processes admit
straightforward calculation of transition probabilities, however, so we have to
resort to slightly more involved techniques. While the QBDmodels are attrac-
tive and we could draw a lot of inspiration and ideas from their treatment in
queueing theory, we have not made a lot of progress down that path. We leave
the QBD models for future work and shall henceforth be concerned with sta-
tistical inference for the two-type branching process model in a phylogenetic
context.
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3.3.2.1 Transition probabilities for the two-type model

The transient distributions for multi-type branching processes like the two-
type DL model are analytically intractable in general. Xu et al. (2015) how-
ever presented a numerical approach for computing transition probabilities for
Markovian multi-type branching processes based on inversion of the associ-
ated probability generating functions. Let 𝑓𝑖𝑗(𝑠1, 𝑠2, 𝑡) denote the pgf for the
two-type DL model in eq. 1 when starting at 𝑋(0) = (𝑖, 𝑗), i.e.

𝑓𝑖𝑗(𝑠1, 𝑠2, 𝑡) =
∞∑
𝑘

∞∑
𝑙
𝑝𝑖𝑗(𝑘, 𝑙, 𝑡)𝑠𝑘1𝑠

𝑙
2

Importantly, the branching property implies the following relationship among
the probability generating functions for different 𝑋(0)

𝑓𝑖𝑗(𝑠1, 𝑠2, 𝑡) = 𝑓10(𝑠1, 𝑠2, 𝑡)𝑖𝑓01(𝑠1, 𝑠2, 𝑡)𝑗

(e.g. Athreya and Ney (1972)), so we may work with 𝑓10 and 𝑓01 and recover
the desired pgfs easily.

In contrast with the linear BDP, we have no closed form solution for 𝑓10 and
𝑓01. We can however, using techniques from Bailey (1990) and Xu et al.
(2015), derive a system of ordinary differential equations of which the pgf
constitutes a solution. Let 𝑝𝑖𝑗(𝑘, 𝑙, 𝑑𝑡) = 𝑟𝑖𝑗(𝑘, 𝑙)𝑑𝑡 + 𝑜(𝑑𝑡), and define the
auxilliary generating functions

𝑢10(𝑠1, 𝑠2) =
∞∑
𝑘=0

∞∑
𝑙=0

𝑟10(𝑘, 𝑙)𝑠𝑘1𝑠
𝑙
2

and 𝑢01(𝑠1, 𝑠2) analogously in terms of 𝑟01(𝑘, 𝑙). Note that the 𝑟10 and 𝑟01
functions are determined by the definition of the process in terms of its in-
finitesimal rates in eq. 3.7. Filling in the relevant parameters we obtain

𝑢10(𝑠1, 𝑠2) = 𝜇1 − (𝜆 + 𝜇1)𝑠1 + 𝜆𝑠1𝑠2
𝑢01(𝑠1, 𝑠2) = 𝜇2 + 𝜈𝑠1 − (𝜆 + 𝜈 + 𝜇2)𝑠2 + 𝜆𝑠22

The pgfs for the process are related to the auxilliary generating functions

𝑓10(𝑠1, 𝑠2, 𝑡) =
∞∑
𝑘

∞∑
𝑙

(
𝟙𝑘=1,𝑙=0 + 𝑟10(𝑘, 𝑙)𝑡 + 𝑜(𝑡)

)
𝑠𝑘1𝑠

𝑙
2
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and similarly for 𝑓01, so that we get

𝑓10(𝑠1, 𝑠2, 𝑡) = 𝑠1 + 𝑢10(𝑠1, 𝑠2)𝑡 + 𝑜(𝑡)
𝑓01(𝑠1, 𝑠2, 𝑡) = 𝑠2 + 𝑢01(𝑠1, 𝑠2)𝑡 + 𝑜(𝑡)

Note furthermore that 𝜕𝑓𝑖𝑗(𝑠1, 𝑠2, 𝑡)∕𝜕𝑡 = 𝑢𝑖𝑗(𝑠1, 𝑠2). We can expand 𝑓10 as a
Taylor series around 𝑡

𝑓10(𝑠1, 𝑠2, 𝑡 + ℎ) = 𝑓10(𝑠1, 𝑠2, 𝑡) + ℎ
𝜕𝑓10(𝑠1, 𝑠2, 𝑡 + ℎ)

𝜕ℎ
|||ℎ=0 + 𝑜(ℎ)

Now exploiting the property of the branching process that

𝑓10(𝑠1, 𝑠2, 𝑡 + ℎ) = 𝑓10{𝑓10(𝑠1, 𝑠2, 𝑡), 𝑓01(𝑠1, 𝑠2, 𝑡), ℎ}

we can rewrite the Taylor expansion as

𝑓10(𝑠1, 𝑠2, 𝑡 + ℎ)

= 𝑓10(𝑠1, 𝑠2, 𝑡) + ℎ
𝜕𝑓10{𝑓10(𝑠1, 𝑠2, 𝑡), 𝑓01(𝑠1, 𝑠2, 𝑡), ℎ}

𝜕ℎ
|||ℎ=0 + 𝑜(ℎ)

= 𝑓10(𝑠1, 𝑠2, 𝑡) + ℎ𝑢10{𝑓10(𝑠1, 𝑠2, 𝑡), 𝑓01(𝑠1, 𝑠2, 𝑡)} + 𝑜(ℎ)

Which shows that

𝜕𝑓10(𝑠1, 𝑠2, 𝑡)
𝜕𝑡

= 𝑢10{𝑓10(𝑠1, 𝑠2, 𝑡), 𝑓01(𝑠1, 𝑠2, 𝑡)}

and analogously for 𝜕𝑓01∕𝜕𝑡. Combining this result with the generating func-
tions 𝑢10 and 𝑢01, we arrive at the following system of non-linear ordinary
differential equations (ODEs)

𝑓 ′
10 = 𝜇1 − (𝜆 + 𝜇1)𝑓10 + 𝜆𝑓10𝑓01

𝑓 ′
01 = 𝜇2 + 𝜈𝑓10 − (𝜆 + 𝜈 + 𝜇2)𝑓01 + 𝜆𝑓 2

01 (3.8)

Where the arguments 𝑠1, 𝑠2 and 𝑡 are omitted for notational convenience and
differentiation is with respect to 𝑡.

No closed form solution for 𝑓10(𝑠1, 𝑠2, 𝑡) and 𝑓01(𝑠1, 𝑠2, 𝑡) can be obtained for
this system, and we solve these ODEs numerically using the Tsit5 solver im-
plemented in DifferentialEquations.jl (Rackauckas and Nie 2017; Tsitouras,
Famelis, and Simos 2011). To obtain transition probabilities from the pgfs
we use the numerical inversion method of Xu et al. (2015), which involves
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Figure 3.18: Comparison of log transition probabilities computed using the pgfmethod
(blue lines) and estimated using Monte Carlo simulations (black dots) for different
algorithm settings (tolerance settings in the ODE solver (tol) and FFT length 𝑁).
Parameters were 𝜆 = 0.2, 𝜇1 = 0.1, 𝜈 = 0.2 and 𝜇2 = 5. Transition proba-
bilities are computed from the state 𝑋(0) = (2, 3) to states 𝑋(𝑡) = (𝑖, 𝑗) where
0 ≤ 𝑖 < 8, 0 ≤ 𝑗 < 10 and 𝑡 = 1. Target states along the 𝑥-axes are ordered
[(0, 0), (0, 1),… , (0, 9), (1, 0), (1, 1)…]. Monte Carlo estimates are based on 10 mil-
lion independent simulations from the model.
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re-expressing the pgf as a Fourier series 𝑓𝑗𝑘(𝑒2𝜋𝑖𝑤1 , 𝑒2𝜋𝑖𝑤2 , 𝑡) so that the coef-
ficients corresponding to the transition probabilities are given by the inverse
Fourier transform, which can be computed numerically using the fast Fourier
transform (FFT) along an 𝑁 × 𝑁 grid. Choice of a higher 𝑁 should lead
to more accurate transition probabilities, and determines the maximum state
from and to which we can compute transition probabilities. In practice the
numerical error is dominated by the tolerance settings in the ODE solver, so
that increasing 𝑁 beyond relatively small values (e.g. 𝑁 = 16) does not lead
to much gain in accuracy for transition probabilities among states with reason-
able probability in our applications (fig. 3.18).

3.3.2.2 Count data likelihood along a phylogeny

With a reasonably efficient method for computing the transition probabilities
available, likelihood-based statistical inference in a phylogenetic context is
possible. Similar to our discussion of the linear phylogenetic BDP above, we
denote by 𝑋1,𝑢 and 𝑋2,𝑢 the number of type 1, respectively type 2, genes at
node 𝑢 ∈ 𝑉 (𝑆), with 𝑋𝑢 = (𝑋1,𝑢, 𝑋2,𝑢). We assume the same tree-structured
generative process as for the phylogenetic BDPs considered above but now
with the two-typeDL process operating along the branches of𝑆. In the present
case we do not, however, actually observe the state of the process at the leaves
of the species tree. Specifically, we cannot observe the number of type 1 and
type 2 genes at the leaves of 𝑆, but assume that we can only observe 𝑍𝑢 =
𝑋1,𝑢 +𝑋2,𝑢 for 𝑢 ∈ (𝑆). The resulting probabilistic graphical model (PGM)
is depicted for a hypothetical three-taxon tree (𝑚 = 3) in fig. 3.19.

Assuming we can decide on a reasonable bound for the 𝑋1 and 𝑋2 variables,
the likelihood of the observed data 𝑝(𝑦|𝜃, 𝜙) =

∏𝑛
𝑖=1 𝑝(𝑦𝑖|𝜃, 𝜙) conditional

on the parameters of the branching process 𝜃 and the prior distribution for the
root 𝜙 can be computed using variable elimination along the PGM, i.e. us-
ing Felsenstein’s pruning algorithm, and integrating the marginal likelihood
values at the root over a suitable prior distribution on the root state. For the
latter, we use, as before, the beta-geometric distribution with mean 𝜂 and dis-
persion 𝜁 as a prior for the total number of genes 𝑍𝑜 at the root node 𝑜 of the
species tree. However, to conduct inference, a prior for (𝑋1,𝑜, 𝑋2,𝑜) is required.
Here we assume that there is at least one type 1 gene in each family, and that
among the 𝑍𝑜 − 1 remaining genes, each gene is of type 1 with probability
𝑟 and type 2 with probability 1 − 𝑟, so that the number of type 2 genes is a
Binomial(𝑍𝑜−1, 1− 𝑟) random variable. We use the resulting distribution for
(𝑋1,𝑜, 𝑋2,𝑜) in our analyses for the two-type DL model and refer to it as the
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𝑋2 𝑋3 𝑋4

𝑋1

𝑋0

𝑍2 𝑍3 𝑍4

𝑍0

𝜂 𝜁 𝑟

𝑡1
𝑡4

𝑡2 𝑡3

𝑖 = 1,… , 𝑛

𝜃

Figure 3.19: Probabilistic graphical model for the phylogenetic two-type DL model of
gene content evolution. We use the notation of Höhna et al. (2014), where circular, un-
shaded nodes represent unobserved random variables, dotted circular nodes represent
conditionally deterministic variables and shaded nodes represent observed variables.
Note that 𝜃 = {𝜆, 𝜇1, 𝜇2, 𝜈}. Priors for 𝜂, 𝜁 and 𝜃 used in Bayesian analyses under the
model are not shown.

BG-Binomial prior (fig. 3.19).

We note that, given that the two-type DL model has the branching property,
it may be possible to devise an algorithm similar to the one of Csűrös and
Miklós (2009) outlined above for the linear phylogenetic BDP, which relies on
the conditional survival likelihood and does not demand an artificial bound on
the natural state space of the BDP. However, the lack of a recursive or closed
form expression for the transition probabilities (as far as we are aware) makes
this quite challenging, and it is unclear at present whether any gains in terms of
computational efficiency or numerical stability are to be expected from such
an approach.

3.3.2.3 Extinction probabilities and condition factors

As for the single-type phylogenetic BDP models considered above, in order
to compute the correct likelihood, we need to account for the biases induced
by the sampling process. In particular, to rule out de novo gain of genes in
arbitrary subtrees of the phylogeny, we usually filter the data so that at least
one gene is present in each clade stemming from the root of the species tree.
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Using the same notation as in sec. 3.1.2.5, we see that we require the probabil-
ityℙ(𝐸𝑢∩𝐸𝑣). We again can rely on the conditional independence of subtrees
of 𝑆 and properties of the pgfs to obtain

ℙ(𝐸𝑢 ∩ 𝐸𝑣) =
∞∑
𝑘=1

𝑘∑
𝑙=1

ℙ{𝐸𝑢 ∩ 𝐸𝑣|𝑋𝑜 = (𝑙, 𝑘 − 𝑙)}ℙ{𝑋𝑜 = (𝑙, 𝑘 − 𝑙)}

=
∞∑
𝑘=1

𝑘∑
𝑙=1

(
1 − 𝑔(𝑢)𝑙,𝑘−𝑙(𝟎)

)(
1 − 𝑔(𝑣)𝑙,𝑘−𝑙(𝟎)

)
ℙ{𝑋𝑜 = (𝑙, 𝑘 − 𝑙)}

(3.9)

Here the last factor is given by the prior distribution on the number of
ancestral lineages in a gene family at the root of the species tree, and
𝑔(𝑢)𝑖,𝑗 (𝐬) = 𝑔(𝑢)10 (𝐬)

𝑖𝑔(𝑢)01 (𝐬)
𝑗 is the joint pgf for the leaf observations in the subtree

rooted in node 𝑢, conditional on the state at the parent of 𝑢, say 𝑢′, being
(𝑖, 𝑗). Assuming there are 𝑚 leaves below 𝑢 and labeling the entries of 𝐬 as
(𝑠1,1, 𝑠1,2, 𝑠2,1, 𝑠2,2,… , 𝑠𝑚,1, 𝑠𝑚,2), where the first index refers to the leaf node
in the subtree below 𝑢 and the second to the gene type, this pgf is written
more explicitly as

𝑔(𝑢)10 (𝐬) =
∑
(𝑘1,𝑙1)

⋯
∑

(𝑘𝑚,𝑙𝑚)
ℙ{𝑋1 =(𝑘1, 𝑙1),… , 𝑋𝑚 = (𝑘𝑚, 𝑙𝑚)|𝑋𝑢′ = (1, 0)}

× 𝑠𝑘11,1𝑠
𝑙1
1,2… 𝑠𝑘𝑚𝑚,1𝑠

𝑙𝑚
𝑚,2

and of course analogously for 𝑔(𝑢)01 . By the branching property and conditional
independence of disjoint subtrees, this pgf can be evaluated efficiently using
a postorder traversal and the single branch pgf 𝑓10. Specifically, consider a
node 𝑢, a distance 𝑡𝑢 from its parent, with (if it is not a leaf) child nodes 𝑣 and
𝑤. We have the following recursive relation:

𝑔(𝑢)10 (𝐬) = 𝑓10
[
ℎ(𝑢)10 (𝐬), ℎ

(𝑢)
01 (𝐬), 𝑡𝑢

]
ℎ(𝑢)10 (𝐬) =

{
𝑠𝑢,1 if 𝑢 is a leaf
𝑔(𝑣)10 (𝐬)𝑔

(𝑤)
10 (𝐬) else

with analogous recursions holding for 𝑔(𝑢)01 and ℎ(𝑢)01 . With the extinction prob-
abilities available for the child nodes of the root 𝑢 and 𝑣, we can approximate
the condition factor ℙ{𝐸𝑢 ∩ 𝐸𝑣} by the first couple of terms in eq. 3.9.
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3.3.2.4 Bayesian inference

With an algorithm for the likelihood 𝑝(𝑦|𝜃, 𝜙) available we can perform
Bayesian inference for the two-type DL model using Markov Chain Monte
Carlo (MCMC) given suitable prior distributions. Unless stated otherwise,
we adopt the following priors in our analyses:

𝜇2 ∼ Exponential(5)
𝑎1, 𝑎2, 𝑎3 ∼iid Beta(1, 1)
(𝜆, 𝜇1, 𝜈) = (𝑎1𝜇2, 𝑎2𝜇2, 𝑎3𝜇2)

𝑟 ∼ Beta(1, 1)

Where we assume 𝜆, 𝜇1, 𝜈 are all < 𝜇2. We fix 𝜂 and 𝜁 to the posterior mean
values obtained from the fit of the beta-geometric distribution to the relevant
data. We implemented a simple adaptive Metropolis-within-Gibbs (MWG) al-
gorithm (Roberts and Rosenthal 2009, see also Appendix A) to sample from
the posterior distribution. All methods are implemented in the Julia program-
ming language (Bezanson et al. 2017) and the associated package is freely
available online (see Appendix B).

3.3.3 Simulation experiments

3.3.3.1 Estimation for simulated data under the two-type DL model

We first assess our ability to recover true parameter values of the two-type
DL model for simulated data from the same model. In particular, the fact
that in empirical data sets we assume only to observe the total gene count 𝑍𝑢
for each family at each leaf node 𝑢 (and not the counts for each type 𝑋𝑢 =
(𝑋1,𝑢, 𝑋2,𝑢)) is a potential source of identifiability issues. Indeed, it is clear
that for a single branch, it would be impossible to identify model parameters
of the two-type DL model based on nothing more than a single observation
of 𝑍 for each family. By considering gene family counts along a phylogeny,
a single family provides multiple correlated observations of the evolutionary
process, providing information about gene content in ancestral branches of the
tree. Observations of𝑍 along the leaves of a phylogeny should therefore also
provide information about ancestral gene content at the type level (𝑋1, 𝑋2).

Simulations of data sets along the Drosophila phylogeny (see fig. 3.6) consist-
ing of 1000 gene families across a range of randomly drawn parameter values
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Figure 3.20: Posterior mean parameter estimates and 95% uncertainty intervals (𝑦-
axis) as a function of the true simulated value (𝑥-axis) for simulations of data sets of
1000 gene families. 𝜇2 values were drawn uniformly from the interval (1, 10), while
𝜆∕𝜇2 𝜇1∕𝜇2 and 𝜈∕𝜇2 were drawn from a Beta(9, 1) distribution. 𝑟 was drawn from a
Beta(3, 1) distribution and 𝜁 from a lognormal distribution with mean 3 and variance
0.2. Plots are shown pairwise in six columns, with on top the results conditioning on
the incompletely observed data𝑍 = 𝑋1+𝑋2 while on bottom the results conditioning
on the fully observed data 𝑋 = (𝑋1, 𝑋2) are shown.

indicate that overall, parameters can be estimated accurately even for relatively
small data sets (fig. 3.20). As expected, using the completely observed two-
type data does lead to a considerably lower variance in the marginal posterior
distribution for 𝜈 compared to the collapsed data. It may be that the marginal
posterior mean for 𝜈 overestimates the true value when using the incompletely
observed data, however all uncertainty intervals contain the true value, so this
risk seems to be minor. Also noticeable, but less dramatic is the difference in
posterior variance for 𝜇2 and 𝑟 (the probability of excess genes at the root to
be of type 1).

In addition, we simulated a data set of 10.000 gene families along the eight-
taxon Drosophila phylogeny using model parameters that seemed reasonable
based on exploratory analyses of subsets of the actual Drosophila data set
(𝜆 = 0.2, 𝜇1 = 0.1, 𝜈 = 0.2, 𝜇2 = 5, 𝜂 = 0.95, 𝜁 = 4 and 𝑟 = 0.5). We obtain
similar results as for our smaller simulations (fig. 3.21), in particular we find
that the posterior variance for 𝜈 is much higher when using the incompletely
observed data. Nevertheless, the associated posterior mean values seem to
align rather well with each other and the true value, suggesting that inference
for the two-type model in a phylogenetic context is indeed possible without
observing a type-specific census. When we perform parameter inference for
the single-type linear BDPmodel and the single-typemodel without extinction
(linear BDIP) for the same simulated data set, we find that the duplication
rate tends to be underestimated in both models (tbl. 3.7). The loss rate of the
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Figure 3.21: Marginal posterior distributions for a simulated data set of 10.000 gene
families, simulated along the eight-taxonDrosophila phylogeny from the two-type DL
process with parameters 𝜆 = 0.2, 𝜇1 = 0.1, 𝜈 = 0.2, 𝜇2 = 5 and a bounded Beta-
geometric prior on the number of lineages at the root with 𝜂 = 0.95, dispersion 𝜁 = 4
and bound at𝑍 = 10. When there is more than one lineage at the root, each additional
lineage has a 𝑟 = 0.5 probability of being a type 2 gene. In black the posteriors con-
ditional on the fully observed data (i.e. 𝑋(𝑢) = (𝑋(𝑢)

1 , 𝑋(𝑢)
2 ) tuples for each leaf node

𝑢) are shown, while in red the posteriors conditional on the total gene count 𝑍 (𝑢) are
shown.

default single-type model only very slightly overestimates 𝜇1 while the loss
rate in the single-type model without extinction strongly underestimates 𝜇2.

3.3.3.2 Estimation for simulated data under the DLF model

We next evaluate to what extent the two-type DL model can approximate the
dynamics of the idealized DLF model, which entails non-independent evolu-
tion of gene copies within a family (see methods). We again simulated multi-
ple data sets of 1000 gene families as well as a large data set of 10.000 gene
families for the eight-taxonDrosophila phylogeny. Note that the total loss rate
for a family consisting of one redundant pair will be 2𝜇𝑟 in the DLF model,
whereas the total loss rate for such a family under the two-type DLmodel (cor-
responding to the state 𝑋 = (1, 1)) will be 𝜇1 + 𝜇2 ≈ 𝜇2. Because such small
families dominate the data, we expect that 𝜇2 ≈ 2𝜇𝑟.

In line with this expectation, we find that the estimated value of 𝜇2 under the
two-type DLmodel corresponds to twice the simulated loss rate per redundant
gene (𝜇𝑟) under the DLF model (fig. 3.22). Similar observations hold for 𝜈, al-
though the large posterior variance blurs the expected relationship of 𝜈 in the
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Figure 3.22: Posteriormean parameter estimates and 95% uncertainty intervals (𝑦-axis)
as a function of the true simulated value (𝑥-axis) for simulations of data sets of 1000
gene families. Data sets were simulated under the DLF model, while inference was
performed under the two-type DL model. 𝜇2 values were drawn uniformly from the
interval (1, 5), while 𝜆∕𝜇2 𝜇1∕𝜇2 and 𝜈∕𝜇2 were drawn from a Beta(9, 1) distribution.
𝑟 was drawn from a Beta(3, 1) distribution and 𝜁 from a lognormal distribution with
mean 3 and variance 0.2. Inference is based on the total gene count (𝑍). The orange
lines for 𝜇2 and 𝜈 mark the expected approximate relationship between the simulated
parameter value in the DLF model and the corresponding parameter in the two-type
DL model (i.e. 𝜇2 ≈ 2𝜇𝑟 and 𝜈 ≈ 2𝜈DLF).

all D. ananassae D. erecta

D. melanogaster D. persimilis D. pseudoobscura

D. sechellia D. simulans D. yakuba

Figure 3.23: Posterior predictive simulations for the family size (𝑘) distribution under
the two-type DL model (gray) and the default single-type linear BDP model (red) ap-
plied to a data set of 10.000 families simulated under the DLF model. The dots mark
the observed size distribution in the simulated data set.
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Table 3.7: Posterior distribution summary showing marginal posterior means and 95%
uncertainty intervals for various models for the simulation replicate associated with
fig. 3.21. We show parameter estimates for the single type models in the same rows as
the parameters with a somewhat similar interpretation in the two-type model for the
sake of comparison.

Parameter Two-type DL model Linear BDP Linear BDIP (non extinct)

𝜆 0.19 (0.18, 0.21) 0.14 (0.14, 0.15) 0.14 (0.13, 0.15)
𝜇1 0.10 (0.09, 0.11) 0.12 (0.11, 0.13) -
𝜇2 4.94 (4.44, 5.51) - 1.25 (1.11, 1.42)
𝜈 0.25 (0.03, 0.54) - -
𝜁 4.20 (3.15, 5.60) 6.77 (4.62, 9.96) 3.69 (2.65, 5.11)
𝑟 0.48 (0.41, 0.54) - -

DLF model to twice 𝜈 in the two-type DL model. Additionally, we note that
the posterior mean 𝜇1 and 𝜆 values for the two-type DL model are very accu-
rate estimators of the corresponding parameters under the DLFmodel. For the
large data set simulated under the DLF model with 𝜆 = 0.2, 𝜇𝑛𝑟 = 0.1, 𝜇𝑟 = 3
and 𝜈 = 0.2, we obtain an estimate for the loss rate per excess gene 𝜇2 of 5.99
(5.35, 6.65), again coinciding with twice the true loss rate per redundant gene.
Similarly, the posterior mean estimate for 𝜈 under the two-type DL model is
obtained as 0.35 (0.10, 0.62), also approximately corresponding to twice the
true value of the underlying DLF model. The much higher posterior variance
for this parameter makes the correspondence again however less clear. These
simulations therefore suggest it is reasonable to assume that twice the loss
rate per excess gene, estimated under the two-type DL model, may serve as an
approximation to the more intuitive loss rate per redundant gene in the DLF
model. Posterior predictive simulations for the fitted two-type DL model fur-
ther show that the posterior predictive distribution is fully compatible with the
data simulated under the DLF model (fig. 3.23), indicating that the two-type
DL model indeed can serve as an approximation to the DLF model.

3.3.4 Analysis of Drosophila, yeast and primate data

We performed Bayesian inference for the two-type DLmodel using gene count
data from Drosophila, yeast and primates already analyzed in sec. 3.1.5, and
compare the estimated model parameters (tbl. 3.8) to parameter estimates for
different single-type BDP models (see tbl. 3.3). We note that for the yeast
and primates data sets, initial tests indicated that numerical inaccuracies in
the likelihood for the two-type model could lead to a failure of the MCMC
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algorithm to converge in some runs. Increasing the FFT length from 𝑁 = 16
(as employed in our simulations) to𝑁 = 32 and decreasing tolerance settings
in the ODE solver alleviated these issues and resulted in proper convergence.

Interestingly, the estimated rates for slow processes in the Drosophila and pri-
mates data sets are roughly on the same scale, corresponding to about 0.1 to
0.3 events per gene per 100My, whereas the yeast data set yields parameter es-
timates that are considerably lower. Of course, this is not wholly unexpected,
given the vastly different genomic organization of yeast species, with small
genomes typically consisting of 5000 to 7000 predicted genes. Clearly, a fail-
ure to model the different loss rates within a family, supposedly caused by
functional redundancy, leads to a loss rate estimate 𝜇 that is dominated by the
large number of non-redundant genes that only rarely get lost. The loss rate in
the default single-type BDP model therefore more closely resembles 𝜇1 than
𝜇2 in the two-type model. The opposite holds for the single-type model for the
number of excess genes in non-extinct families (the linear BDIP). Indeed, we
find that for the yeast and primates data sets, the posterior mean parameter es-
timates appear to correspond to a combination of the corresponding estimates
for the linear BDP and BDIP models (tbl. 3.3), with 𝜇1 in the two-type model
roughly the same as 𝜇 in the linear BDP model and 𝜇2 roughly corresponding
to 𝜇 in the linear BDIP model fit. This is especially the case for the primates
data, where the rate of type 2 to type 1 transitions appears to be negligible
compared to the other rates, and we end up with a two-type model that is es-
sentially like a linear BDP but with a distinct rate for 1 → 0 transitions. In all
data sets, the loss rate for an excess (type 2) gene 𝜇2 is an order of magnitude
higher than other rate parameters, with an implied half-life (𝑡1∕2) of a type 2
gene of about 11, 39 and 30 My for the three data sets respectively (tbl. 3.8).
If we assume 𝜇2 ≈ 2𝜇𝑟 (see above), these can be interpreted as the half-lives
of duplicate pairs under the DLF model. We further note that the ratios of
𝜆∕𝜇2 of about 0.04, 0.02 and 0.06 are in agreement with the beta-geometric
stationary distribution fit of the single-type model. The marginal posterior
mean estimate of the probability that a new duplicate gets established eventu-
ally (i.e. becomes a type 1 gene, rather than suffering loss, 𝑝𝑥) is a mere 3%
for the Drosophila data, about 2% for the yeast data and 0.5% for the primates
data. Again, under the DLF model, this value can be interpreted as the proba-
bility that a duplicate pair undergoes successful sub- or neofunctionalization
so that it is stably established in the genome.

For the Drosophila data, and to a lesser extent the yeast data, we find that
the duplication rate estimated for the two-type DL model is higher than for
the single-type models, which is in line with our simulations above. However



135

the loss rates for the linear BDIP model (see tbl. 3.3) tend to be somewhat
lower than the estimates for 𝜇2 for the two-type model. This is consistent
with the dynamics the two-type process is supposed to model, as duplicated
genes that sub- or neofunctionalize should pull back the loss rate towards the
loss rate of non-redundant genes in the corresponding single-type model. In
other words, when assuming all duplicated genes to have the same loss rate
(as in the single-type non-extinct model), the presence of duplicate genes that
have become essential leads to a downwardly biased loss rate when interpreted
as the rate of pseudogenization of redundant duplicate genes. We note that an
additional explanatory factor may be that the subset of families which do not
go extinct has a lower average loss rate per excess gene than the full data set.

Table 3.8: Marginal posterior parameter estimates for the Drosophila, yeast and pri-
mates data sets (see sec. 3.1.5). For all analyses, the prior on the number of lineages at
the root was a beta-geometric distribution with 𝜂 and 𝜁 parameters fixed to the marginal
posterior mean values obtained from the stationary distribution fit (fig. 3.6, tbl. 3.3).
We use an exponential prior for 𝜇2 with mean equal to the posterior mean value of 𝜇
under the single-type model with no extinction. 𝑡1∕2 and 𝑝𝑥 denote the half-life (in My)
and probability of 𝑥-functionalization (in %) of a type 2 gene respectively.

Parameter Drosophila Yeasts Primates (GO:0002376)

𝜆 0.26 (0.24, 0.28) 0.03 (0.02, 0.03) 0.13 (0.12, 0.14)
𝜇1 0.19 (0.18, 0.20) 0.06 (0.05, 0.06) 0.13 (0.12, 0.13)
𝜇2 6.37 (5.98, 6.93) 1.79 (1.64, 1.97) 2.32 (2.15, 2.50)
𝜈 0.20 (0.08, 0.35) 0.05 (0.01, 0.10) 0.01 (0.00, 0.05)
𝑟 0.12 (0.10, 0.15) 0.01 (0.00, 0.03) 0.01 (0.00, 0.03)
𝑡1∕2 (My) 11 (10, 12) 39 (35, 42) 30 (28, 32)
𝑝𝑥 (%) 3.1 (1.3, 5.0) 2.3 (0.4, 5.2) 0.6 (0.0, 2.0)

Posterior predictive simulations indicate that the two-type model provides a
better fit to the size distribution than the single-type model for all data sets
(see fig. 3.24 for the Drosophila data). For all three data sets we find that
the Kullback-Leibler (KL) divergence𝐷KL(𝑝, �̃�) from the posterior predictive
frequency distribution �̃� to the observed frequency distribution 𝑝 for the two-
type model is less than half of the same KL divergence obtained under the
default single-type model. We note that the different degrees of correspon-
dence of the posterior predictive distributions to the observed size frequency
distributions for different taxa suggests rate heterogeneity across branches of
the species tree, a complication we ignore here. As expected, the posterior
predictive size distribution is underdispersed with respect to the true distribu-
tion further in the tail, which is a consequence of ignoring rate heterogeneity
across families. This is less so for the single-type model, where the tail of the
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D. ananassae D. erecta D. melanogaster D. persimilis

D. pseudoobscura D. sechellia D. simulans D. yakuba

Figure 3.24: Posterior predictive densities of the gene family size distributions for each
of the eight leaves of the Drosophila phylogeny. The distribution of the differences of
the observed gene family size frequencies (𝑝𝑘) with the frequencies observed in 1000
posterior predictive simulations (�̃�𝑘) is plotted. In red and gray posterior predictive dis-
tributions for the two-type and single-type (linear BDP) model are shown respectively.

posterior predictive distribution is closer to the observed distribution. This is
simply a result of the distribution on the number of lineages at the root (which,
we remind the reader, is derived from a phylogeny-unaware beta-geometric fit
of the observed data) being better preserved under the process, which has a
lower overall event rate. We note that the posterior predictive distribution for
the non-zero counts under the two-type model is nearly indistinguishable from
the posterior predictive distribution for the single-type model for non-extinct
families.

While rate heterogeneity across families could be accounted for by using a
mixture modeling approach, we refrain from doing so in the present study for
reasons of computational feasibility. We may however apply an ad hoc pro-
cedure to apply rate heterogeneity across families in our posterior predictive
simulations by considering the fit of the BG distribution to the data. As we
discussed in chapter 2, the BG distribution is the stationary distribution of a
special case of the linear BDIP model with rate heterogeneity under the model
where the ratio 𝜆∕𝜇2 is iid distributed according to a beta distribution across
families. The parameters of this stationary distribution can be easily estimated
from the data, and we estimated the dispersion parameter for the Drosophila
data for instance at 𝜁 = 4.01 (fig. 3.6). The linear BDIP model can however
be seen as a special case of the two-type DL model where 𝜇1 = 𝜈 = 0, and
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D. ananassae D. erecta D. melanogaster D. persimilis
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Figure 3.25: Posterior predictive simulations assuming 𝜆∕𝜇2 is Beta distributed across
gene families with dispersion 𝜁 = 4.01. On the left the joint distribution of family-
specific 𝜆 and posterior mean 𝜇2 values is shown. The eight panels on the right show
the posterior predictive family size distributions with (red) and without (black) the
post hoc procedure to account for rate heterogeneity across families based on the Beta-
Geometric assumption.

where the initial state is𝑋 = (1, 𝑋2). If we assume 𝜆∕𝜇2 to be beta-distributed
across families, and take for each replicate simulation of the posterior distribu-
tion the value of 𝜆∕𝜇2 as the mean of this beta distribution, we may simulate
from the posterior distribution under this assumption as follows: For each of
the 𝑖 ∈ (1,… , 1000) replicate simulations we sample a (𝜆∕𝜇2, 𝜇2)𝑖 pair from
the posterior and compute 𝛼𝑖 = 𝜁 (𝜆𝑖∕𝜇2,𝑖) and 𝛽𝑖 = 𝜁 (1−𝜆𝑖∕𝜇2,𝑖). For each of
the 𝑗 ∈ (1,… , 𝑛) families in the 𝑖th simulation replicate, we sample a random
value for 𝜉𝑖𝑗 = 𝜆𝑖𝑗∕𝜇2,𝑖𝑗 by sampling fromBeta(𝛼𝑖, 𝛽𝑖). We then obtain 𝜆𝑖𝑗 and
𝜇2,𝑖𝑗 by assuming 𝜇2,𝑖𝑗 = 𝜇2,𝑖 and 𝜆𝑖𝑗 = 𝜉𝑖𝑗𝜇2,𝑖. Note that this procedure trans-
lates the assumed variation in 𝜆∕𝜇2 across families to heterogeneity in 𝜆 alone
across families. The joint posterior distribution of the family-specific rates ob-
tained following this procedure is shown in fig. 3.25. The resulting posterior
predictive distribution still fits the small family sizes well (as in fig. 3.24), but
now no longer underestimates the proportions of larger families, and yields
predictions compatible with the observed power law tail (fig. 3.25). This again
clearly shows that the power-law tail of the gene family size distribution can
be explained by rate heterogeneity across families.

3.3.5 Whole-genome duplications in the two-type model

In sec. 3.2, we described the DLWGD model of Rabier, Ta, and Ané (2014),
which provides one way to account for WGDs in the context of the linear phy-
logenetic BDP. The essence of the DLWGD model is that it seeks to account
for the massive gene loss that is thought to occur after whole-genome duplica-
tion using a single parameter, the retention probability 𝑞. With probability 𝑞
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the duplicate gene survives rediploidization and becomes just another gene in-
dependently evolving in the phylogenetic BDP, while with probability 1−𝑞 the
gene is lost before rediploidization completes. Clearly, one can hardly think
of a more crude model of post-polyploidy genome evolution (except perhaps
a no-parameter model, where all gene families simply duplicate, and gene loss
after polyploidy is simply modeled by the linear BDP, as in Tasdighian et al.
(2017)).

While this model makes sense in the context of the linear BDP model, this
is only because the loss rate in the latter mostly accounts for the rate of non-
redundant gene loss, or gene family extinction. The rate of loss of (partly)
redundant duplicated genes is likely much higher than the loss rate inferred
under the linear BDP model, as exemplified by our loss rate estimates under
the linear BDIP (for non-extinct families) model and 𝜇2 in the two-type DL
model. From the perspective of the latter models, the problem presented by
WGDs takes a rather different form, in that we now need not so much model
themassive loss of redundant duplicates created byWGD, but rather the excess
retention after WGD.

Making the connection with the population genetics of duplicate gene reten-
tion will clarify this point. If WGD-derived duplicate genes are completely
redundant, as we presume many will be, then a double-recessive model in
which recessive mutations at the two loci occur with some mutation rate, and
where only the double recessive genotype has reduced fitness, may be a rel-
evant model for the evolution of these loci.15 Predictions of the time until
silencing under such a double-recessive model of duplicate gene evolution
however indicate that the observed degree of gene loss after polyploidy is ac-
tually much lower than expected under such a model (Watterson 1983; Walsh
2003). In other words, long-term retention of gene duplicates after WGD
tends to be more common than expected under a model of strict gene redun-
dancy, suggesting that some portion of the genome violates the double reces-
sive (or a cognate) model. Biological explanations for this phenomenon in-
clude subfunctionalization through degenerative mutations (as for instance in
the duplication-degeneration-complementation (DDC) model of Force et al.
(1999)) as well as gene dosage effects and haploinsufficiency (Kondrashov
and Koonin 2004; Birchler and Veitia 2010; Makino and McLysaght 2010) –

15Note that in such a model, we typically assume that we can identify two different unlinked
diploid loci, i.e. the parental locus and the duplicated locus are two independent disomically
inherited loci (e.g. Watterson 1983). This would be a reasonable model for allotetraploids, but
less so for autotetraploids with tetrasomic inheritance (either through multivalent formation or
random bivalent formation).
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all of which lead to a violation of the double recessive model.

The two-type model admits a different approach for modeling retention after
WGDwhichmay appearmore relevant than the simpleDLWGDmodel in light
of the observations noted in the previous paragraph. We describe the model
for general 𝑘-level multiplications (𝑘-WGMs). We start from the same simple
model as the one of Rabier, Ta, and Ané (2014), supposing that WGD events
are marked along the species tree 𝑆 by nodes with in- and outdegree one, and
that each WGM event is associated with a single parameter 𝑞. At a WGM
event, we assume that all genes (both of type 1 and type 2) duplicate 𝑘 times.
We assume that the 𝑘−1 duplicates of a type 2 gene are all of type 2, whereas
each of the 𝑘− 1 duplicates of a type 1 gene is of type 1 with probability 𝑞 or
of type 2 with probability 1 − 𝑞 independently. Clearly, if the total number of
genes in the family before the 𝑘-WGM is 𝑧, the number of genes after the event
will be 𝑘𝑧. In contrast with DLWGD model considered above, gene loss after
WGD is not modeled by a process distinct from the SSDL process. Instead, we
assume that some type 1 genes duplicate to give rise to excess (type 2) genes,
which are prone to rapid loss, whereas others give rise to new base (type 1)
genes, which get lost only rarely. The latter is of course supposed to model,
for instance, dosage sensitive genes, where duplicated copies are supposed to
be essential in a similar way as their ancestor was before the WGM event.

The transition probability of the two-type process at a WGM node 𝑢 under this
model is easily obtained. Using the same notation as in sec. 3.2, we have

ℙ{𝑋𝑢 = (𝑎, 𝑏)|𝑋𝑢′ = (𝑐, 𝑑)}

=

{
0 if (𝑎 + 𝑏 ≠ 𝑘(𝑐 + 𝑑)) or ¬(𝑐 ≤ 𝑎 ≤ 𝑘𝑐)((𝑘−1)𝑐

𝑎−𝑐

)
𝑞𝑎−𝑐(1 − 𝑞)𝑘𝑐−𝑎 else

Similarly, the pgfs required for computing extinction probabilities along the
phylogeny can be obtained as

𝑓10(𝑠1, 𝑠2) =
𝑘−1∑
𝑗=0

(
𝑘 − 1
𝑗

)
𝑞𝑗(1 − 𝑞)𝑘−1−𝑗𝑠𝑗+11 𝑠𝑘−1−𝑗2

𝑓01(𝑠1, 𝑠2) = 𝑠𝑘2

With the transition probabilities and pgfs available, we can use the pruning
algorithm and recursions for extinction probabilities as before to compute the
phylogenetic likelihood under this two-type DLWGD model.
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Figure 3.26: Posterior predictive simulations for the single-type and two-type DLWGD
model applied to the 10-taxon yeast data set. The phylogeny is shown on the left
with the WGD marked by the black circle. The middle set of 10 panels shows the
posterior predictive family size distribution for small families for the 10 taxa with the
95% posterior predictive interval for the single-type model shown in gray and for the
two-type model in green, with the observed frequencies marked by the black dots. A
detail of the proportion of single-copy families is shown on the right.

Example (yeast WGD). We applied the two-type DLWGDmodel to the well-
known WGD event in yeast, using a 10-taxon data set obtained from YGOB
(fig. 3.26). We use the beta-geometric distribution with parameters 𝜂 = 0.98
and 𝜁 = 4 for the prior on the family size at the root and condition on non-
extinction in both clades stemming from the root, as in the yeast data analyses
above. We verified the identifiability of the model by conducting inference for
simulated data (not shown). We find a posterior mean retention probability es-
timate of 𝑞 = 0.08 (0.07, 0.09) for the single-type DLWGD model, whereas
the estimate for the 𝑞 parameter for the two-type model was 0.04 (0.04, 0.05),
suggesting that about 5% of duplicated genes were retained after WGD. We
note that we find a somewhat high type 2 loss rate 𝜇2 compared to our yeast
analyses above, with estimated posterior mean 4.9 (4.6, 5.3), as well as a high
𝑥-functionalization rate of 0.35 (0.30, 0.41). While it is hard to assess whether
these rates are reasonable and what this could signal, a possible and biologi-
cally interesting explanation is differential retention patterns in the different
clades which share theWGD. Since in the two-type model, all genes duplicate
after the WGD, a low 𝑞 combined with a high 𝜈 and 𝜇2 allows WGD-derived
duplicate genes of type 2 to shift to type 1 genes differentially in lineages
that diverge after the WGD. We note that the two-type model may provide a
slightly better fit than the single-type one as judged from the posterior predic-
tive family size distributions (fig. 3.26), although the difference is marginal
and neither model provides a particularly good fit, possibly in part due to vari-
ation in rates across lineages. □

Wenote that inference ofWGDs is less straightforward under this model, since



141

𝑞 = 0 is no longer representative for a no-WGD model, indeed 𝑞 = 0 would
entail that all genes that are born due to the WGD event start their lives as
type 2 genes. To infer WGDs under the two-type DLWGD model one would
therefore have to resort to more general model selection techniques, which
tend to be computationally intensive (as they usually rely on an estimate of
the marginal likelihood). We do not consider the two-type DLWGD model
further here, noting, as we did above, that a more detailed study of WGD
would benefit from considering more data than mere gene counts. We shall
briefly come back to this in chapter 6.

3.3.6 Discussion on the two-type model

We have described a two-type continuous-time branching process model of
gene family evolution, showed the feasibility of estimating its parameters from
incomplete data in a phylogenetic context using simulations, and performed
Bayesian inference of model parameters for comparative genomic data sets.
Comparisons with closely related single-type phylogenetic BDP models high-
light the shortcomings of these models and indicate how a two-type process
may provide a first step towards more realistic stochastic models of gene fam-
ily evolution, providing more detailed and biologically meaningful quantita-
tive insights in the associated evolutionary processes.

The main virtue of the two-type DL model is the discrimination between non-
redundant functional genes that are only rarely lost, and duplicates which may
be largely redundant and therefore more prone to loss by pseudogenization.
We noted that the model proposed here can be viewed as an approximation
to the gene family evolution dynamics where duplicated genes are (partially)
functionally redundant and evolve in a non-independent manner (as in the DLF
model). Compared to the DLF model, the loss rate 𝜇2 in the two-type process
does not correspond to the loss rate per redundant gene, but rather the loss rate
per excess gene in a family. We explicitly examined the connection between
the two models using simulated data and find that parameter estimates under
the two-type DL model can be interpreted in the context of the more intuitive
DLF model.

An alternative approach to account for differences in loss rates within a family
which may be natural to adopt is to consider an age-dependent process (more
precisely a ‘budding’ age-dependent branching process (Greenman and Chou
2016)), where the loss rate of a duplicated gene decreases through time. Such
a model has been considered by Zhao et al. (2015), albeit not in the context
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of gene content evolution along a phylogeny. Inference of model parameters
relies however on knowledge of the gene family trees and ages of duplication
events (dated reconciled gene trees in the comparative genomic setting), the
estimation of which is of course an extremely challenging statistical problem
in its own right. Without access to such high-quality gene trees, inference
from gene counts alone seems highly challenging. Indeed, statistical inference
of age-dependent branching processes more generally is an active research
topic of considerable mathematical sophistication (e.g. Fok and Chou 2013;
Greenman and Chou 2016).

It is important to stress what is notmodelled by the phylogenetic two-type DL
process. Most importantly, we do not explicitly model the population genetics
of fixation of copy number variants (CNVs). Clearly, most duplication events
will either be lost due to drift if neutral, or lost by purifying selection when
deleterious, and as a result leave no trace in extant genomes. The duplication
rate 𝜆 in the model should therefore be interpreted as a proxy for the rate at
which gene duplications that rise to high frequency occur. We have however
no guarantee that the observed copy numbers are monomorphic in their re-
spective populations, so the presence of low-frequency CNVs in the data may
cause 𝜆 to overestimate the rate at which duplications that fix in the popula-
tion occur. Similar considerations hold for the loss rate parameters 𝜇1 and
𝜇2, which should be interpreted as rates of gene deletion events, not the rates
of loss of unfixed duplicate genes by genetic drift or purifying selection. Of
course, exactly the same issues hold for single-type models as well. We note
that, if gene duplications were predominantly neutral (which is of course ex-
tremely unlikely), the estimated 𝜆 should roughly correspond to the per-gene
duplicative mutation rate. For Drosophila, the duplicative mutation rate has
been estimated at 1.25×10−7 duplications per gene per generation (Schrider et
al. 2013). Taking this as a crude estimate of the order of magnitude of the du-
plicative mutation rate, and considering a long-term average generation time
between 7 to 20 days, the expected duplication rate 𝜆 under neutrality would
be at least a 100 times larger than the rates we estimated under the two-type
DL model, suggesting that the vast majority of duplications is deleterious. A
more detailed picture of the distribution of fitness effects of new duplications
remains however elusive.

The two-type DL model may provide new quantitative insights in the long-
term evolutionary dynamics of duplicated genes. In our analyses of compar-
ative genomic data sets, we find that the loss rate per excess gene is much
higher than the loss rate per base gene, suggesting that even when gene dupli-
cates establish in a population, the selective pressures ensuring their mainte-



143

nance differ strongly from those maintaining typical single-copy genes. For
instance, for the Drosophila genus, we estimated that on average half of the
duplicated genes are maintained over a period of approximately 11 My and
that about 3% of the duplicated genes may eventually become stably estab-
lished (complete x-functionalization) so that their loss rates reflect those of
base genes. The half-life of a typical base gene on the other hand is estimated
at 371 My. Concomitantly, our results indicate that estimates of long-term
gene loss rates based on simple BDP models (as in e.g. Hahn, Han, and Han
(2007) for Drosophila) likely underestimate the actual loss rates of duplicated
genes significantly, while estimates of duplication rates tend to be in rough
agreement with those presented here.

What then causes gene duplicates that establish in a population to remain
prone to higher loss rates? Or conversely, how are gene duplicates that are
non-essential and prone to loss at relatively high rates established in the first
place? Of course, completely redundant duplicates may drift to fixation, and
it is unsurprising that such genes would be prone to higher loss rates than
their essential counterparts (Walsh 2003). Many gene duplicates that rise to
fixation may however be adaptive (Han et al. 2009; Innan and Kondrashov
2010; Kondrashov 2012), demanding an answer to the first question. As Kon-
drashov (2012) stressed, it may be misleading to think of gene duplicates as
either completely redundant or non-redundant, as many adaptive duplications
may establish as a consequence of positive selection for increased dosage in
a stressful environment, despite being qualitatively redundant. In such cases,
a changing environment or the emergence of other genetic variants may alter
selection pressures over time, and while some duplicated gene may promote
adaptation during some environmental challenge, it may return to a state of
complete redundancy or even come at a fitness cost later (Kondrashov 2012).
Our phylogenetic analyses may go some way supporting this view of long-
term gene family evolution, where many of the duplicated genes in multi-copy
gene families reside for some time in the genome, but eventually suffer loss
before undergoing complete sub- or neofunctionalization.
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4 Tree distributions and phylogenomic forests

In the previous chapters, we have modeled gene family evolution across the
genome without explicit reference to the locus and gene trees introduced in
chapter 1. We have conditioned our statistical analyses of the content of our
‘bags of genes’ on a known species tree, which provided the backbone along
which our models of evolution were supposed to operate. In the following two
chapters, trees will feature much more prominently, and in particular proba-
bility distributions over a set of trees will be our bread and butter. Indeed,
the latter chapters share a phylogenomic theme, where the subfield of phyloge-
nomics roughly refers to the study of genome evolution from the perspective
of a genome-scale collection of phylogenetic trees. In the present interlude,
we shall hence be a bit more formal in our treatment of phylogenetic trees and
introduce some of the concepts which are central to our work in the rest of this
dissertation.

4.1 Probability distributions on trees

A lot of phylogenetics concerns the inference of evolutionary trees, which
come in various kinds (fig. 4.1). As before, we use phylogeny as a general term
for any graph representation of evolutionary relationships among taxonomic
units, which may be species, populations, (sub)genomes, loci, alleles or even
human languages (we refer to all these, somewhat inaccurately, as taxa for the
sake of brevity). By a cladogram, or rooted tree topology, we understand a
leaf-labeled directed graph, with a designated root node which has indegree
zero. A well known counting argument (see e.g. Felsenstein 2004) shows that
there are

𝑐𝑛 =
∏

1≤𝑖≤2𝑛−3
𝑖 odd

𝑖 = (2𝑛 − 3)!
2𝑛−2(𝑛 − 2)!

(4.1)
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Figure 4.1: Different kinds of phylogenetic trees. From left to right: unrooted tree
topology (displayed branch lengths are meaningless), rooted tree topology or clado-
gram (displayed branch lengths are meaningless), rooted phylogram, timetree.

distinct rooted tree topologies on 𝑛 leaves. This number grows rather dramat-
ically with 𝑛, with, for instance, the number of rooted tree topologies for 20
taxa already exceeding 8 × 1021. An unrooted tree topology is an undirected
graph with no cycles. The number of unrooted 𝑛-taxon trees can be easily ob-
tained by noting that after designating one arbitrary taxon as root one obtains
a rooted topology, and each of the rooted topologies on the 𝑛 − 1 remaining
taxa corresponds to a distinct unrooted tree on the original 𝑛-taxon set. A
phylogram is a cladogram with a positive real number assigned to each edge,
referred to as the branch’s length. A timetree is a phylogram where branch
lengths measure calendar time.

Probability distributions on phylogenetic trees are of interest for various rea-
sons and arise in different ways. We may distinguish three main situations:

1. Uniform distributions on certain combinatorial classes of trees (e.g. un-
rooted trees, cladograms, ranked trees, etc. for a fixed set of leaves).

2. Tree distributions induced by stochastic processes such as branching
processes, birth-death processes, coalescent processes or fragmenta-
tion/coagulation processes.

3. Distributions on trees arising in statistical inference settings, such as empir-
ical measures derived from MCMC samplers or bootstrapping algorithms.

This is no clear-cut classification, but serves as an aid for further discussion.
The first class is rather self-explanatory: having specified some combinatorial
class, such as “all unrooted tree topologies on 𝑚 leaves”, we can assign an
arbitrary probability measure on this (discrete) sample space.

In the second class of tree distributions, the stochastic process which induces
the distribution typically serves as a parametric model of an evolutionary pro-
cess of interest, as in the case of population genetic models like Kingman’s 𝑛-
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coalescent, macroevolutionary birth-death processes, or the duplication-loss
models of gene family evolution we have dealt with in the previous chapter.
Many of these models induce distributions on timetrees for some associated
time scale. Clearly, any distribution on timetrees induces a fortiori a distri-
bution on cladograms and unrooted trees. An important further distinction
in these types of models arises from whether the model generates trees on a
specified number of leaves, or not. The former typically correspond to evo-
lutionary models which are specified backwards in time (e.g. coalescent pro-
cesses) whereas the latter correspond to forward-timemodels (e.g. birth-death
processes), although the two are not unrelated (see e.g. coalescent point pro-
cesses; Lambert and Stadler 2013). Note that in the latter case a distribution
on 𝑚-taxon trees can usually be obtained by conditioning on the event that 𝑚
taxa are in fact generated by the forward-time process, however, this condi-
tioning need not be analytically or computationally tractable.

The third class of tree distributions arises in a rather different setting. For
instance, in classical Bayesian phylogenetic inference for continuous-time
Markov chain (CTMC) models of sequence evolution, the goal is to de-
termine the joint posterior distribution over tree topologies  , branch
lengths 𝜙 (expected number of substitutions per site) and substitution model
parameters 𝜃 conditional on observed sequence data 𝑦. Virtually all Bayesian
phylogenetic inference relies on MCMC methods to simulate approximately
from the joint posterior distribution and to estimate posterior probabilities
of phylogenies. Such an MCMC sample will constitute an empirical tree
distribution (in the sense of an empirical (random) measure), which serves
as an approximation to the actual posterior distribution over phylogenetic
trees relating the different sequences in 𝑦. Bootstrap or jackknife methods in
phylogenetic inference also give rise to tree distributions of this sort. Often
these distributions arise in inference settings where one believes there is a
true underlying tree topology ‘around’ which the tree sample is distributed.

Considering such empirical distributions over tree topologies on a fixed leaf
set  of size 𝑚, we note that these can in general be represented by a cate-
gorical distribution with parameter {𝑝𝑗∶ 𝑗 = 1,… , 𝑐𝑚} (assuming a suitable
indexing of the space of tree topologies has been fixed). Assuming we have an
iid sample ( (1),… ,  (𝑁)) from this distribution, the parameter of the cate-
gorical distribution over tree space can be estimated by the empirical measure,
which uses the observed tree frequencies in the sample

�̂�𝑗 =
1
𝑁

𝑁∑
𝑖=1

[ (𝑖) = 𝑇𝑗] 𝑗 = 1,… , 𝑐𝑚 (4.2)
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Figure 4.2: The correspondence between a rooted cladogram  (left) and the asso-
ciated clade collection ( ) (right), depicted as a Hasse diagram with respect to the
inclusion (⊆) order.

However, this estimator is not always desirable as it may have large variance
for small 𝑁 and will likely assign probability zero1 to a large portion of tree
space. The issue is of course that for 𝑚 sufficiently large, we are trying to
estimate 𝑐𝑚 parameters using a sample 𝑁 ≪ 𝑐𝑚. For continuous probability
spaces, there are two commonly used strategies for estimating densities from
samples: (1) approximation by simpler parametric densities (e.g. a Gaussian
distribution) and (2) nonparametric density estimation, or smoothing, meth-
ods, such as histograms or kernel densities. A natural question is whether one
can devise reasonable analogous strategies for distributions over tree topolo-
gies.

4.2 Markov branching models

Let (𝑣) denote the set of leaves in the subtree rooted in 𝑣 for some inter-
nal node 𝑣 of a rooted tree  , and let  ≝ (root of  ). We define the
clade associated with node 𝑣 to be the set (𝑣). The rooted tree topology on a set of leaves  of size 𝑚 can be represented as a collection of clades( ) = {(𝑣)∶ 𝑣 ∈ 𝑉 ( )}. The tree topology coincides with the usual Hasse
diagram on () (the powerset of ) ordered by inclusion and restricted to( ) (fig. 4.2). We define the split of a clade 𝛾 to be the pair of daughter
clades associated with 𝛾 , e.g. ({1, 2, 3, 4}, {5}) is the split of the clade  in
fig. 4.2. Following the usual notation for sets, we let |𝛾| refer to the size of
clade 𝛾 , i.e. the number of leaves contained in it.

1From a Bayesian perspective, any estimator which assigns probability zero to some parts of
the space under consideration is highly suspect. One should only assign probability zero to some
event when one is absolutely certain that the event will not obtain, which usually means that the
event entails some logical contradiction.
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Algorithm 1 MBMRecursion(𝑇 , 𝛾, 𝑞)
1: if 1 < |𝛾| ≤ 𝑚 then
2: 𝑋 ∼ 𝑞|𝛾|(⋅)
3: 𝛾1 ∼ Uniform({𝛿 ⊂ 𝛾 ∶ |𝛿| = 𝑋})
4: 𝛾2 ← 𝛾 − 𝛾1
5: 𝑇 ← 𝑇 ∪ {𝛾1, 𝛾2}
6: 𝑇 ←MBMRecursion(𝑇 , 𝛾1, 𝑞)
7: 𝑇 ←MBMRecursion(𝑇 , 𝛾2, 𝑞)
8: end if
9: return 𝑇

An interesting and useful parametric family of distributions over rooted tree
topologies based on the correspondence between trees and clade collections
has appeared repeatedly in the literature (e.g. Maddison and Slatkin 1991; Al-
dous 1996; Blum and François 2006; Jones 2011). Aldous (1996) refers to
these as Markov branching models (MBMs). A MBM (, {𝑞𝑛∶ 2 ≤ 𝑛 ≤ 𝑚})
consists of a leaf set  where || = 𝑚 and a collection of probability distri-
butions 𝑞𝑛(𝑖) on 𝑖 ∈ [1..𝑛 − 1] where 𝑞𝑛(𝑖) = 𝑞𝑛(𝑛 − 𝑖). A MBM generates a
random cladogram by initiating the recursion in algorithm 1 with 𝑇 = {}
and 𝛾 = . When the algorithm terminates, the clade collection 𝑇 is isomor-
phic to a rooted cladogram in the sense of fig. 4.2.

Clearly the splitting process in a MBM is Markovian, as the split of a clade 𝛾
does not depend on its parent clade. Depending on the symmetric probability
distribution we choose we will get different distributions on cladograms. In
its most general form, the split size distributions 𝑞𝑛 are arbitrary symmetric
categorical distributions on [1..𝑛−1], so that a MBM on 𝑚 leaves is specified
by at most

𝑚∕2∑
𝑘=1

2(𝑘 − 1) = 𝑚(𝑚 − 2)
4

𝑚 even

(𝑚−1)∕2∑
𝑘=1

2(𝑘 − 1) + 𝑚 − 1
2

= (𝑚 − 1)2

4
𝑚 odd

parameters (i.e. the number of parameters in an arbitrary MBM grows as
𝑂(𝑚2)). Several well known distributions on cladograms can be formulated
as MBMs with additional constraints on the split size distributions 𝑞𝑛. For
instance:
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1. The constant rates birth-death model (CRBD), where 𝑞𝑛(𝑖) = 1∕(𝑛 − 1)
for all 𝑛. This is the distribution on cladograms with 𝑚 leaves induced by
birth-death processes with constant birth and death rates conditioned on
generating 𝑚 extant leaves. The so conditioned pure-birth process (Yule-
Furry process) is a special case. Kingman’s 𝑛-coalescent (see next chapter)
induces the same distribution on cladograms.

2. The proportional to distinguishable arrangements (PDA) model, character-
ized by

𝑞𝑛(𝑖) =
1
2

(
𝑛
𝑖

)
𝑐𝑖𝑐𝑛−𝑖
𝑐𝑛

where 𝑐𝑖 is as in eq. 4.1. This distribution is notable because it gives rise
to a uniform distribution on rooted cladograms.

3. The random partition tree model (RPM) (Maddison and Slatkin 1991),
where

𝑞𝑛(𝑖) =

{(𝑛
𝑖

)
(2𝑛−1 − 1)−1 if 𝑛 odd(𝑛

𝑖

)
(2𝑛 − 2)−1 else

where the probability of a split of size 𝑖 for clade 𝛾 of size 𝑛 is proportional
to the number of possible splits of size 𝑖 of clade 𝛾 .

Note that while linear birth-death processes and Kingman’s coalescent induce
different distributions on timetrees, they both induce the CRBD distribution
on cladograms. These models have been studied extensively in the context of
empirical tree data sets and phylogenetic tree (im)balance. Further discussion
and analysis in that context can be found in Aldous (1996), Blum and François
(2006) and Jones (2011), among others.

The split distributions for the above MBMs are motivated by combinatorial
considerations. Interestingly however, Aldous (1996) showed that all these
models appear as special cases in a one-parameter family of MBMs, which
he called the 𝛽-splitting model. Under the 𝛽-splitting model, the MBM split
distribution is defined as

𝑞𝑛(𝑖) =
1

𝑠(𝛽, 𝑛)
Γ(𝛽 + 𝑖 + 1)Γ(𝛽 + 𝑛 − 𝑖 + 1)

Γ(𝑖 + 1)Γ(𝑚 − 𝑖 + 1)
(4.3)

Where 𝛽 ∈ [−2,∞) and 𝑠(𝛽, 𝑛) is a normalizing constant. The 𝛽 parameter
determines the degree of balance2 of a typical tree, with larger 𝛽 resulting

2A tree is balanced when the subclades of any particular split tend to have similar sizes. We
will not go into formal details on how to measure tree balance here and trust that the reader has
an intuitive feel for this notion. We refer to Felsenstein (2004) and Jones (2011) for detailed
treatments.
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Figure 4.3: Aldous’ 𝛽-splitting model. The subclade size distribution 𝑞10(𝑖) for differ-
ent values of 𝛽 is shown in the leftmost plot (A). The trees show random realizations
from the 𝛽-splitting model on 20 taxa for different values of 𝛽.

in more balanced trees (fig. 4.3). At the extreme end of 𝛽 = −2, we obtain
the uniform distribution on “comb” trees (i.e. a uniformly randomly labeled
comb tree shape). The PDA model appears for 𝛽 = −3∕2, while the CRBD
model appears for 𝛽 = 0. At the other extreme we obtain the RPM model
of Maddison and Slatkin (1991) as 𝛽→∞. Large-scale analyses of empirical
trees (Blum and François 2006; Jones 2011) have shown that 𝛽 ≈ −1 pro-
vides a good fit, indicating that empirical trees are typically more balanced
than the ubiquitously used uniform (PDA) model predicts, but less balanced
than predictions for the similarly widespread CRBD model – a finding which
has some repercussions for the choice of prior distribution in Bayesian phylo-
genetic analyses (Jones 2011). The special case 𝛽 = −1 is known as Aldous’
branching (AB) model.

4.3 Conditional clade distributions

There is a close connection betweenMBMs such as the 𝛽-splittingmodel and a
smoothing method for empirical tree distributions proposed by Larget (2013).
The latter method is based on what Larget termed the conditional clade dis-
tribution (CCD). Here we will take the liberty to generalize the definition of
a CCD such that both MBMs and Larget’s CCD appear as a special case. We
return to Larget’s construction, which we term the empirical CCD, below.

Instead of defining a MBM on a leaf set using the set of symmetric probabil-
ity distributions for subclade sizes {𝑞𝑛∶ 1 < 𝑛 ≤ 𝑚}, we define a CCD using a
collection of arbitrary categorical distributions 𝜃 = {𝜃𝛾∶ 𝛾 ⊆ , |𝛾| > 1} on
the subclades themselves. A CCD generates a cladogram similarly as a MBM,
but with 𝛾1 ∼ 𝜃𝛾 in algorithm 1. In more detail, consider such a collection of
conditional split distributions 𝜃, and assume we have fixed a total order rela-
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tion< on(). Any non-leaf clade 𝛾 ⊆  in a tree 𝑇 will have a split (𝛿, 𝛾−𝛿)
where 𝛿 ⊂ 𝛾 and 𝛿 < 𝛾−𝛿. We formally identify a split of a given clade 𝛾 with
its smallest subclade, in this case 𝛿. Now let  be a random tree and 𝑌 ⊂ 𝛾
be the random split of 𝛾 in  . In the CCD family of distributions, we assume
that the conditional clade probability ℙ(𝑌 = 𝛿|𝛾) = 𝜃𝛾,𝛿 , so that the distribu-
tion over splits of 𝛾 is categorical with parameter 𝜃𝛾 = (𝜃𝛾,1,… , 𝜃𝛾,#𝛾 ), where
#𝛾 = 2|𝛾|−1−1 is the number of possible splits of 𝛾 . Note that this definition of
a CCD subsumes the MBM family sensu Aldous. Indeed, in the special case
where 𝜃𝛾 is a function which only depends on 𝛾 through |𝛾|, we will obtain a
MBM as defined above. For instance, a 𝛽-splitting CCD will be defined by

𝜃𝛾,𝛿 = 𝑞|𝛾|(|𝛿|)(|𝛾||𝛿|
)−1

where 𝛿 ⊂ 𝛾, 𝛾 ⊆  (4.4)

with 𝑞𝑛(𝑖) defined as a function of 𝛽 as in eq. 4.3. Given a parameterized CCD, computing the likelihood 𝑝( |𝜃) of a rooted tree topology  under the
model is straightforward and can be done in 𝑂(||) time.

Note that the number of possible splits #𝛾 of a clade 𝛾 grows exponentially
in the size of the clade, so that the number of parameters associated with an
arbitrary CCD on 𝑚 leaves will be

𝑚∑
𝑘=2

(
𝑚
𝑘

)
(2𝑘−1 − 2) = 2

𝑚∑
𝑘=0

(
𝑚

𝑘 + 2

)
(2𝑘 − 1) = 3𝑚 − 2𝑚+2 + 2𝑚 + 3

2

which is 𝑂(3𝑚), a rather dramatic increase compared to a general MBM, but
still a considerable reduction compared to an arbitrary categorical distribution
on the space of possible tree topologies on 𝑚 leaves (compare for instance
1.7 × 109 with the 8 × 1021 mentioned in the introduction for 𝑚 = 20). This
reduction is a consequence of theMarkovian assumption: the split distribution
of a clade 𝛾 does not depend on its parent or sister clades. In other words, the
topology of the subtree on the set 𝛾 only depends on 𝛾 and not on the topology
induced on − 𝛾 . The CCD family of distributions is hence characterized by
the conditional independence of disjoint subtrees.

4.3.1 The empirical CCD

The smoothing method proposed by Larget (2013), and used in an elegant
way by Szöllősi, Rosikiewicz, et al. (2013) in the context of phylogenomic
forestry (see below), is based on this principle of conditional independence of
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disjoint subtrees and leads to a particular CCD which we call the empirical
CCD. Recall that in the smoothing problem, the goal is to, given some sample
of tree topologies (1,… 𝑁 ), construct a more adequate approximation of
the distribution on tree topologies than the naive empirical measure eq. 4.2.
Larget proposed to approximate the distribution of  by the CCD with split
distributions estimated from the sample. Specifically, let 𝑛𝛾 be the number of
times the clade 𝛾 is observed in the sample, and let 𝑛𝛾,𝛿 be the number of times
the split 𝛿 is observed as a subclade of 𝛾 in the sample. The conditional clade
probability 𝜃𝛾,𝛿 in the empirical CCD is then defined as

𝜃𝛾,𝛿 =
𝑛𝛾,𝛿
𝑛𝛾

=
𝑛𝛾,𝛿∑#𝛾
𝑖=1 𝑛𝛾,𝛿𝑖

=∶ �̂�𝛾,𝛿

Given a sample of𝑁 rooted tree topologies on a leaf set  of size 𝑚, a simple
postorder traversal for each observed tree in the sample suffices to compute the
split count 𝑛𝛾,𝛿 , and hence the associated empirical CCD can be constructed
in 𝑂(𝑚𝑁) time. Clearly, if the counts are stored (and not merely the 𝜃𝛾,𝛿) the
empirical CCD can be updated in a sequential fashion as more data comes
in by simply updating the split counts. If the sample (1,… , 𝑁 ) would be
weighted in anyway, so that (𝑤1,… , 𝑤𝑁 ) is a vector of associatedweights, the
empirical CCD can obviously be generalized to take this into account simply
by multiplying the contribution of 𝑖 to the CCD by its respective weight 𝑤𝑖.

Szöllősi, Rosikiewicz, et al. (2013) proved that the empirical CCD sensu
Larget (2013) corresponds to the maximum entropy probability distribution
𝑝( ) over the space of cladograms for a fixed leaf set subject to the constraint
that the marginal split frequencies induced by 𝑝 correspond to the observed
marginal split frequencies 𝑛𝛾,𝛿∕𝑛𝛾 in the sample, which provides some moti-
vation for its use as a smoothing distribution. That the empirical CCD satisfies
this constraint is obvious of course, but that it should maximize the entropy
over all discrete probability distributions over tree space is less so. We note
that since the CCD forms an exponential family (see also below) with suffi-
cient statistic 𝑛𝛾,𝛿 , it must follow from the theory of exponential families that
the empirical CCD is the maximum entropy CCD distribution subject to a
constraint on marginal split frequencies. However, this does not entail that
the empirical CCD is the maximum entropy distribution over all possible tree
distributions (which are not necessarily in the CCD family) subject to this con-
straint. It is however not hard to show that the maximum entropy distribution
subject to the constraint on observed marginal split frequencies is indeed a
CCD, and hence the empirical CCD.
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Consider a leaf set  of size 𝑚 and fix any index set 𝑖 ∈ {1,… , 𝑐𝑚} on the
space of possible rooted tree topologies so that 𝑇𝑖 is a well-defined tree topol-
ogy and assume we have some sample of rooted tree topologies (1,… , 𝑁 ).
Let {𝑝1,… , 𝑝𝑐𝑚} be the probability distribution we wish to construct based on
the sample, where 𝑝𝑖 = ℙ{ = 𝑇𝑖}. The entropy of this probability distribu-
tion on tree topologies is

𝐻 = −
𝑐𝑚∑
𝑖=1

𝑝𝑖 log 𝑝𝑖

Let �̂�𝛾,𝛿 be the observed frequency of the split (𝛾, 𝛿) in the sample, and let 𝑝𝛾,𝛿
be the probability of this split induced by the tree distribution {𝑝𝑖}. We now
wish to find the probability distribution {𝑝𝑖} which maximizes the entropy
subject to the constraint that

∑𝑐𝑚
𝑖=1 𝑝𝑖 = 1 and that

𝑝𝛾,𝛿 =
∑𝑐𝑚

𝑖=1 𝟙𝛾,𝛿(𝑇𝑖)𝑝𝑖∑𝑐𝑚
𝑖=1 𝟙𝛾 (𝑇𝑖)𝑝𝑖

= �̂�𝛾,𝛿 ∀𝛾 ⊆ , 𝛿 ⊂ 𝛾 (4.5)

The usual approach to solve such a constrained maximization problem is to
construct the Lagrangian

ℒ = −
∑
𝑖
𝑝𝑖 log 𝑝𝑖 − 𝛼

(∑
𝑖
𝑝𝑖 − 1

)
−
∑
𝛾,𝛿

𝜆𝛾,𝛿
(∑

𝑖
𝟙𝛾,𝛿(𝑇𝑖)𝑝𝑖 − �̂�𝛾,𝛿

)
where 𝛼 and 𝜆𝛾,𝛿 are Lagrange multipliers. We then solve 𝜕ℒ∕𝜕𝑝𝑖 = 0 for 𝑝𝑖
to find that

𝑝𝑖 ∝ exp
(
−
∑
𝛾,𝛿

𝟙𝛾,𝛿(𝑇𝑖)𝜆𝛾,𝛿
)
= exp

(
−

∑
(𝛾,𝛿)∈𝑇𝑖

𝜆𝛾,𝛿
)
=

∏
(𝛾,𝛿)∈𝑇𝑖

Φ𝛾,𝛿

So that the probability 𝑝𝑖 = ℙ{ = 𝑇𝑖} under the maximum entropy distri-
bution is the product of split-specific factors. Hence, the maximum entropy
probability distribution must be a CCD, and the theory of exponential families
implies then that it is the empirical CCD, i.e. thatΦ𝛾,𝛿 = 𝑝𝛾,𝛿 . The conclusion
is that, if one is willing to derive a probability distribution over trees from a
collection of observed split frequencies, then the obvious thing to do, i.e. con-
structing a CCD by matching the moments of the split distributions to the
empirical split distributions, is indeed the right thing to do, in the sense that
it represents the minimally informative distribution over trees subject to the
stated constraints (see e.g. Jaynes 2003).
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𝑣
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5

𝛾3 = {5}

𝑣

𝛾1 = {1, 2} 𝛾2 = {3, 4}

Figure 4.4: (Left) Unrooted tree topology  , drawn as a pseudo-rooted tree. (Right)
Clade neighborhood of internal node 𝑣 in  . Each clade is the outgroup clade for the
pair consisting of the two remaining clades.

4.3.2 Empirical CCD for unrooted trees

The empirical CCD as discussed above is easily generalized to unrooted tree
topologies by marginalizing over the different possible root positions. An 𝑚-
taxon tree has 2𝑚 − 3 possible root positions. A naive algorithm to construct
an empirical CCD from a collection of unrooted tree topologies would iterate,
for each unrooted tree  , over the 𝑖 = 1,… , 2𝑚 − 3 possible rooted tree
topologies ̃𝑖, updating the observed splits with ̃𝑖 as in the rooted case but
with weight 1∕(2𝑚−3) (or any other weight if we have some informative prior
probability distribution over the possible root positions). For large trees and
large samples this induces however a considerable computational overhead. A
more efficient algorithm is possible with only a single pass over the unrooted
tree. Note that an unrooted tree is not typically represented as an undirected
graph data structure but rather as a pseudo-rooted tree, i.e. an arbitrarily rooted
tree (fig. 4.4). Algorithm 2 will correctly update the (weighted) marginal split
counts {𝑛𝛾,𝛿} of an empirical CCD given some observed pseudo-rooted tree
topology 𝑇 . The weight 𝑤𝑖𝑗 added at line 8 is the proportion of possible
rootings of 𝑇 in which the split (𝛾𝑖, 𝛾𝑗) appears in the associated rooted tree.
The weight 1∕(2𝑚 − 3) added to 𝑛,𝛾𝑘 at line 9 accounts for the fact that any
clade in the unrooted tree is a possible subclade of the root clade  (i.e. the
leaf set).

4.3.3 Problems with the empirical CCD

Two potential problems with the empirical CCD should be noted: (1) the as-
sumption of conditional independence of disjoint subtrees may be too strin-
gent and may not provide a reasonable fit to empirical tree distributions, and
(2) while covering a much larger portion of tree space than the empirical mea-
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Algorithm 2 AddUnrootedTree(𝑇 , {𝑛𝛾,𝛿})
1: for each non-root internal node 𝑣 in 𝑉 (𝑇 ) do
2: Identify the clade neighborhood (𝛾1, 𝛾2, 𝛾3) at 𝑣 (see fig. 4.4).
3: for each clade pair (𝛾𝑖, 𝛾𝑗) in the clade neighborhood do
4: 𝛾 ← 𝛾𝑖 ∪ 𝛾𝑗
5: 𝛿 ← min(𝛾𝑖, 𝛾𝑗)
6: 𝛾𝑘 ←  − 𝛾
7: 𝑤𝑖𝑗 ← (2|𝛾𝑘| − 1)∕(2𝑚 − 3)
8: 𝑛𝛾,𝛿 ← 𝑛𝛾,𝛿 +𝑤𝑖𝑗
9: 𝑛,𝛾𝑘 ← 𝑛,𝛾𝑘 + 1∕(2𝑚 − 3)

10: end for
11: end for

sure, the empirical CCD still assigns zero probability mass on a large part of
tree space. The first issue is of course an issue of the CCD family in general,
not restricted to the empirical CCD, whereas the second is concerned specifi-
cally with the empirical CCD.

The first issue is the main motivation for the work on subsplit Bayesian net-
works (SBNs) of Cheng Zhang andMatsen IV (2018a) (also Cheng Zhang and
Matsen IV (2018b)). SBNs are similar to CCDs but allow for more compli-
cated conditional dependence structures, resulting in a more flexible paramet-
ric approximation of an arbitrary distribution on cladograms. In Cheng Zhang
and Matsen IV (2018a), the authors showed that the SBN better approximates
empirical tree distributions than the CCD by comparing the CCD and SBN
approximations based on relatively small MCMC samples of trees against the
empirical measure obtained from large ‘gold standard’ MCMC samples from
the same target distribution. The conclusion is that empirical tree distributions
arising for instance in Bayesian phylogenetic inference using MCMC tend to
violate the principle of conditional independence at least to some degree, so
that SBNs provide an improvement over the empirical CCD. SBNs were used
by Cheng Zhang and Matsen IV (2018b) as variational distributions on clado-
grams in the context of variational Bayesian (VB) phylogenetic inference, a
promising alternative for the computationally intensive MCMC methods that
dominate Bayesian phylogenetic inference. We will return to the use of para-
metric distributions on cladograms for variational inference in the next chapter,
albeit in a rather different context than the latter authors.

The second issue pertains to the undesirable situation already mentioned
above, namely that, at least from a Bayesian standpoint, it is undesirable to
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assign probability zero to outcomes which are not considered impossible
(when the prior assigns non-zero probability to some set in the parameter or
model space, and the data does not logically contradict this set, the posterior
probability of that set should be positive). If one is willing to make some
parametric assumptions, treating the tree smoothing problem in a more
explicitly Bayesian way provides a solution for these issues.

4.3.4 Bayesian estimation of CCDs

The CCD, as a collection of categorical distributions, forms an exponential
family, and hence has many nice mathematical properties, such as the exis-
tence of a conjugate family. If we consider the 𝜃𝛾 unknown, and model them
as Dirichlet distributed random vectors, we obtain a conjugate prior distribu-
tion for a CCDwhich can be characterized as a collection of Dirichlet densities
{𝑎𝛾∶ 𝛾 ⊆  |𝛾| > 1} with parameters 𝑎𝛾 = (𝑎1, 𝑎2,… , 𝑎#𝛾 ). We refer to this
distribution as a Dirichlet-CCD. Note that a realization from a Dirichlet-CCD
on the leaf set  is a CCD on . A particular class of Dirichlet-CCD distri-
butions we will be using is the one for which the mean is a 𝛽-splitting CCD.
Specifically, we define for 𝛽 ≥ −2 and 𝛼 ≥ 0 a 𝛽-Dirichlet-CCD so that for
each clade 𝛾 the Dirichlet density over split distributions has the parameter
𝑎𝛾 = (𝛼𝜃𝛾,1,… , 𝛼𝜃𝛾,#𝛾 ) where 𝜃𝛾,𝛿 is defined as in eq. 4.4. When used as
a prior in a Bayesian context, 𝛼 can be interpreted as a pseudocount, the in-
formation embodied by the prior being equivalent to 𝛼 observations from the
associated 𝛽-splitting model.

Consider now again the problem of learning a CCD from a sample of tree
topologies. The existence of a conjugate family allows replacing the empir-
ical CCD by a Bayes estimator if we are willing to make a parametric prior
assumption. Assuming a 𝛽-Dirichlet-CCD prior, entailing the prior mean is
a 𝛽-splitting model, the posterior distribution will again be a Dirichlet-CCD,
now with parameters 𝑎𝛾 = (𝛼𝜃𝛾,1 + 𝑛1,𝛾 ,… , 𝛼𝜃𝛾,#𝛾 + 𝑛𝛾,#𝛾 ). The marginal
posterior probability of the split 𝑌𝛾 of clade 𝛾 in a random tree being 𝛿 is then

𝜃′𝛾,𝛿 = ℙ(𝑌 = 𝛿|𝛾, 𝛼, 𝛽, 𝑦) = 𝛼𝜃𝛾,𝛿 + 𝑛𝛾,𝛿∑#𝛾
𝑖=1 𝛼𝜃𝛾,𝑖 + 𝑛𝛾,𝑖

(4.6)

A Bayes estimator for the CCD after observing the data set 𝑦 can be easily de-
rived from the posterior as the CCD with conditional split distributions given
by eq. 4.6. Note that the empirical CCD is obtained as the special case where
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𝛼 = 0, and that whereas the support of the empirical CCD is restricted by
the observed clades in 𝑦, the support in the case where 𝛼 > 0 will be the full
tree space. Crucially however, for a finite sample the 𝑛𝛾 = (𝑛𝛾,1,… 𝑛𝛾,#𝛾 ) will
typically be sparse for most 𝛾 , so that for computations we need not represent
the huge number of parameters that define such a CCD in general.

4.4 Phylogenomic forests

Before embarking on specific applications of the CCD in Bayesian statistical
modeling of genome evolution, we discuss briefly the general role these dis-
tributions could play in phylogenomic modeling. In discrete mathematics and
machine learning (and ecology, of course), researchers sometimes refer to a
collection of trees as a forest, a notable example being the random forest in
machine learning. What we would propose to call a phylogenomic forest can
be defined in the following way

Ψ1,… ,Ψ𝑛|𝜃 ∼iid 𝑓1(⋅|𝜃)
 (1)
𝑖 ,… ,  (𝑁)

𝑖 |Ψ𝑖, 𝜓𝑖 ∼iid 𝑓2(⋅|Ψ𝑖, 𝜓𝑖)

Where 𝑓1 will be a tree distribution of the second class above (i.e. a tree distri-
bution induced by some evolutionary model) and 𝑓2 a distribution of the third
class (an empirical tree distribution).

This is perhaps best illustrated by an example, studied in detail in a later
chapter. Consider the multispecies coalescent (MSC) model (Hudson 1983;
Pamilo andNei 1988) and let 𝜃 = (𝑆, 𝜙)where𝑆 is a species tree topology and
𝜙 a vector of effective population sizes for the branches of 𝑆, so that 𝑓1(⋅|𝜃) is
theMSC distribution over gene tree topologies (Degnan and Salter 2005). The
collection (Ψ1,… ,Ψ𝑛) is then the set of gene trees for 𝑛 loci. Now suppose
we have inferred gene tree topologies from sequence data for each locus using
a standard Bayesian phylogenetics program, obtaining a sample of tree topolo-
gies ( (1)

𝑖 ,… ,  (𝑁)
𝑖 ) for locus 𝑖. We assume this sample to be an iid sample

from some distribution over tree topologies which depends in some way on the
true tree topology Ψ𝑖 and some other parameter 𝜓𝑖. Note that we are not spec-
ifying a full hierarchical Bayesian model for the tree topologies and sequence
data here, but rather assume (1) a model for the gene tree topology associated
with each locus and (2) that we are given a sample of tree topologies for each
locus obtained by other means, which may even be unknown to us.
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The reason for introducing this idea formally is to stress that this is one point
of view one could adopt when seeking to learn about genome evolution from
genome sequence data using Bayesian methods. It is however not a very
commonly adopted point of view, with Bayesian approaches in phylogenomic
modeling usually explicitly including the sequence data in a hierarchical
model of the form

Ψ1,… ,Ψ𝑛|𝜃 ∼iid 𝑓1(⋅|𝜃)
𝑋(1)

𝑖 ,… , 𝑋(𝑀)
𝑖 |Ψ𝑖, 𝜂𝑖 ∼iid 𝑓2(⋅|Ψ𝑖, 𝜂𝑖)

Where 𝑋(𝑗)
𝑖 denotes column 𝑗 of the multiple sequence alignment (of length

𝑀) for gene family 𝑖, and 𝑓2 is a typical phylogenetic CTMC (Höhna et al.
2016). In theMSC example this is the approach taken by, for instance, Rannala
and Yang (2003) and Heled and Drummond (2009), as we shall discuss in
more detail in the next chapter. Of course, the reason this point of view is
adopted is that the 𝑋𝑖 are supposed to be the ‘observed’ data, and the only
source of information about theΨ𝑖. This is a rather strong assumption, since it
is by nomeans clear how the𝑋𝑖 could be observed, with each𝑋(𝑗)

𝑖 in fact being
the result of a complicated bioinformatic pipeline assumed to unveil homology
among individual residues. So even if the process of sequence evolutionwould
be adequately modeled by an iid CTMC across individual sites (itself a strong
assumption), it remains to be seen if one can actually ascertain the supposedly
observed sites. It is only with a great deal of willful ignorance that we can call
a multiple sequence alignment ‘observed data’.

One can take the hierarchical model one step further by including sequence
alignment in the probabilistic model (Redelings and Suchard 2005), but be-
sides the tremendous computational challenges associated with such an ap-
proach, many conceptual difficulties remain. In particular, the inference of
which sequences to align (i.e. gene-level homology inference) remains out of
the model’s scope, and we are still required to assume that the atomization
of an often biologically functional DNA sequence into individual sites makes
evolutionary sense. While the more integrative hierarchical models that are
called for are of course highly welcome (Szöllősi et al. 2015), it appears nev-
ertheless to be a kind of “turtles all the way down” situation. If taken seri-
ously, the Bayesian maxim that we should take into account all the available
information (and theory) in devising a joint probability model for the data and
unknowns would never allow us to take off, let alone carry through Bayes’
theorem and actually compute a posterior in reasonable time.
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Nevertheless, in phylogenomicmodeling, pragmatic considerations force us to
start somewhere, and we would contend that, for certain purposes, itmay be as
reasonable to start a Bayesian analysis for a genome-level evolutionary model
with empirical distributions of locus-specific tree topologies (computed using
standard phylogenetic tools for tree inference under CTMCmodels) as to start
from the associated multiple sequence alignments, although the latter analysis
could subsume the former. More specifically, inference of 𝜃 in a phylogenomic
forest model, while conceptually an approximation of the sequence alignment
model, could be very useful, even if only for the ‘division of labor’ it implies
computationally. In the next two chapters, wewill consider Bayesian inference
for models of genome evolution from this perspective.
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5 Likelihood-free Bayesian inference for themul-
tispecies coalescent

An important hierarchical phylogenomic model that has received considerable
attention is themultispecies coalescent (MSC). TheMSCmodel is a retrospec-
tive model for the genealogy 𝐺 (gene tree) of a single locus within a species
tree or population tree 𝑆 (see chapter 1). The main reason for sustained inter-
est in the MSC model is that it provides a fairly tractable model for some of
the population-level processes that cause variation in gene genealogies (but
not family sizes) across the genome, more specifically the phenomenon of in-
complete lineage sorting (ILS), or deep coalescence (chapter 1), and allows
statistical inference of species trees from molecular sequence data while ac-
counting for this variation.

The basic hierarchical model for sequence data (𝑋1,… , 𝑋𝑛) from 𝑛 loci, con-
ditional on a species tree 𝑆 with branch parameters 𝜙 (see below) can be writ-
ten as

𝐺𝑖|𝑖, 𝑆, 𝜙 ∼iid MSC𝑖
(𝑆, 𝜙)

𝑋𝑖|𝐺𝑖, 𝜃𝑖 ∼ PhyloCTMC(𝐺𝑖, 𝜃𝑖) (5.1)

for 𝑖 = 1,… , 𝑛. Here 𝑖 denotes the leaf set for locus 𝑖, and we assume the
existence of a map 𝜎∶ 𝑖 → (𝑆) associating with each gene the species or
population from which it was sampled. The hierarchy involves a genome and
gene level model, assuming the locus tree to be identical to the species tree,
with the pair (𝑆, 𝜙) constituting the genome-level parameter. TheMSCmodel
is more formally defined below, but we note already that a crucial, and rather
controversial, assumption underlying this hierarchical model is that there is
no recombination within a locus (so that there exists a single genealogy for
each locus), and free recombination among loci (which is embodied by the as-
sumption of independence in eq. 5.1). Importantly, as stated above, the model
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is a retrospective one, and conditions on having observed a particular sample
of 𝑛 loci with leaf sets 𝑖 (see below). It is a generative model for a collection
of genealogies relating a fixed set of extant genes, and not a generative model
for a collection of genomes in the sense that for instance a birth-death process
model of gene family evolution is.

Although a wealth of methods has been developed for statistical inference of
species trees (and associated demographic parameters) under the MSCmodel,
considerable statistical and computational challenges persist and continue to
invite new approaches. Existing popular methods range from full-Bayesian
joint inference of species trees and gene genealogies (Heled and Drummond
2009; Rannala and Yang 2017) to fast heuristic methods based on summary
statistics of the (assumed known) empirical gene tree distribution (Liu, Yu,
and Edwards 2010; Chao Zhang et al. 2018; Zhang et al. 2020) (reviewed
in e.g. Xu and Yang (2016), Rannala et al. (2020), Mirarab, Nakhleh, and
Warnow (2021)). In this chapter we employ the theory of conditional clade dis-
tributions (CCDs) developed in chapter 4 to devise likelihood-free Bayesian
inference methods for the MSC model. Before motivating our interest in such
methods, a brief introduction to the MSC model will be presented.

5.1 Gene genealogies and the MSC

5.1.1 The Wright-Fisher model and Kingman’s 𝑛-coalescent

The MSC model is derived from the widely used coalescent models of molec-
ular population genetics, in particular Kingman’s 𝑛-coalescent model. King-
man’s 𝑛-coalescent arises in turn from considering the forward-in-time neutral
Wright-Fisher (WF) population model retrospectively.

The WF model, named after Wright (1931) and Fisher (1930) is arguably the
simplest nontrivial population genetic model for finite populations. Under
the WF model, we assume (1) a haploid population of constant size 𝑁 , (2)
discrete non-overlapping generations, (3) no selection, (4) panmyxis, (5) no
recombination. In the strictly neutral model, a diploid WF population of 𝑁
individuals may be modeled by a haploid one of 2𝑁 individuals, reflecting the
fact that under the assumptions stated, Mendelian inheritance ensures that we
may treat a diploid population as if it were obtained by random sampling from
a gene poolwithout loss of essential information. Note that this device fails for
higher ploidy levels, as biparental inheritance in, for instance, a tetraploid pop-
ulation evolving under WF assumptions does not amount to an independent
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sampling of four gene copies from a gene pool (but see Arnold, Bomblies, and
Wakeley (2012)).

With these assumptions, the WF model further postulates that the number of
descendants of each (haploid) individual is distributed according to a multi-
nomial distribution with 𝑁 cells and cell probabilities 1∕𝑁 . If we track the
evolution of a particular allele which is currently at frequency 𝑋0∕𝑁 = 𝑖∕𝑁
in the WF population, we obtain a Markov chain𝑋𝑡 on the state space [0..𝑁],
where 𝑋𝑡 = 𝑁 indicates fixation of the allele by generation 𝑡 and 𝑋𝑡 = 0
indicates loss from the population by generation 𝑡. Under the WF model, the
transition probability for 𝑋𝑡 is given by a Binomial law:

ℙ{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} =
(
𝑁
𝑖

)(
𝑖
𝑁

)𝑗(
1 − 𝑖

𝑁

)𝑁−𝑗
0 ≤ 𝑗, 𝑖 ≤ 𝑁

The process𝑋𝑡 is a discrete time martingale, and it can be seen by considering
the symmetry of the model that the probability that a gene at frequency 𝑝 will
eventually fix in the population is exactly 𝑝. Clearly, this is the ultimate ‘bean-
bag genetics’ model (Mayr 1959; Haldane 1964), the genetic composition of
the offspring generation being determined by randomly sampling genes with
replacement from the current generation. Note that it is customary in popu-
lation genetics to define the effective population size 𝑁𝑒 of some population
of interest as the population size of a WF population with similar statistical
properties as the population under consideration1. We will use 𝑁 throughout
and understand it to refer to the effective population size in this sense.

Considering this process now backwards in time, we see that the probability
that two genes in the extant population find their most recent common ancestor
(MRCA) 𝑡 generations in the past has a geometric distribution

ℙ{𝑇𝑐 = 𝑡} =
(
1 − 1

𝑁

)𝑡−1 1
𝑁

We say the two lineages coalesce, or merge into one lineage, at 𝑇𝑐 . From this
we make the important observation that the expected coalescence time of two
lineages is𝑁 (or 2𝑁 in a diploid population). If we consider now a sample of
𝑘 genes, the probability that there is no coalescence event among any of the 𝑘
genes in the previous generation is (Hein, Schierup, andWiuf 2004; Kingman

1Here we gloss over the many subtleties associated with the concept of effective population
size and the various ways of defining it. Walsh and Lynch (2018) (chapter 3) provide an informa-
tive discussion and many relevant references.
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1982a)(
1 − 1

𝑁

)(
1 − 2

𝑁

)
…

(
1 − 𝑘 + 1

𝑁

)
= 1 −

(
𝑘
2

)
1
𝑁

+ (𝑁−2)

Assuming that 𝑘 ≪ 𝑁 , so that (𝑁−2) is negligible and we may ignore the
possibility of multiple coalescence events in a single generation, we see that
the probability for 𝑘 lineages to coalesce into 𝑘 − 1 lineages 𝑡 generations in
the past is approximately

ℙ{𝑇𝑘 = 𝑡} ≈
(
1 −

(
𝑘
2

)
1
𝑁

)𝑡−1(𝑘
2

)
1
𝑁

Assuming an initial sample of 𝑛 ≪ 𝑁 genes, this model describes a discrete-
time ancestral process which consists of a series of 𝑛 − 1 coalescence events
with expected waiting times 𝑁∕

(𝑛
2

)
, 𝑁∕

(𝑛−1
2

)
,… , 𝑁 .

One way to derive Kingman’s 𝑛-coalescent, after Kingman (1982a) and King-
man (1982b), is to rescale time in the discrete-time ancestral process just de-
scribed to a continuous time scale so that one time unit is equivalent to 𝑁 (or
2𝑁 in the diploid case) generations. The continuous-time ancestral process
thus obtained is characterized similarly by a series of 𝑛−1 coalescence events,
where the waiting time distributions are given by

ℙ{𝑇𝑘 ≤ 𝑡} = 1 − 𝑒−
𝑘(𝑘−1)

2 𝑡

i.e. 𝑇𝑘 ∼ Exponential(𝑘(𝑘−1)∕2). This characterizes Kingman’s 𝑛-coalescent
in terms of waiting times between consecutive coalescence events: we start
with 𝑛 lineages, after an exponentially distributed waiting time 𝑇𝑛, two lin-
eages out of the 𝑛, sampled uniformly without replacement, coalesce and the
process starts anewwith 𝑛−1 lineages. This proceeds until all lineages have co-
alesced into the MRCA of the sample under consideration. It should be noted
that Kingman’s 𝑛-coalescent arises from many different models, notably the
Cannings model (which includes the WF and Moran models as special cases)
where the distribution over the number of offspring of each of the 𝑁 individ-
uals is only required to be exchangeable (Kingman 1982a; Etheridge 2011).

Note that Kingman’s 𝑛-coalescent defines a continuous-time Markov chain
𝑌𝑡 on the space of partitions of [1..𝑛]: we start with the maximally fine par-
tition 𝑌0 = {{1}, {2},… , {𝑛}} with 𝑛 elements and after an exponentially
distributed time 𝑡 a new, coarser, partition is obtained by replacing two uni-
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Figure 5.1: Genealogies for five independent random realizations of Kingman’s coa-
lescent on a sample of 15 genes. Note the expected behavior where many coalescence
events occur in short succession near the leaves of the tree while much longer waiting
times tend to be observed towards the root. Note also the rather balanced tree shapes
that arise from the standard coalescent (the distribution over cladograms coincides with
the 𝛽-splitting model with 𝛽 = 0, see chapter 4).

formly randomly drawn elements by their union. The process can thus be
decomposed in a jump process and waiting time process (Hein, Schierup, and
Wiuf 2004), and the two processes conceived together induce a distribution
on timetrees (on a timescale of 𝑁 generations) with 𝑛 leaves, parameterized
by a single parameter: the effective population size 𝑁 or coalescence rate
𝑁−1. From this description it is clear that the simulation of genealogies and
associated statistics under Kingman’s coalescent can be done in an extremely
efficient manner, and fig. 5.1 shows the obligate example of a bunch of gene
genealogies simulated under the coalescent model. The relative efficiency of
simulation, compared to evaluation, of the sampling distribution under King-
man’s coalescent has lead to considerable interest in simulation-based statisti-
cal inference in molecular population genetics and is associated with the ori-
gin of the so-called approximate Bayesian computation methods (Tavaré et al.
(1997); Sisson, Fan, and Beaumont (2018); see also Appendix A).

5.1.2 The multispecies coalescent model

The MSC model, as commonly understood, arises from a structured coales-
cent process and some additional assumptions about recombination between
and within loci. With ‘structured coalescent’, we refer loosely to a situation
where a coalescent process is defined for a set ofWF populations (generally of
different sizes), derived from some common ancestral population. The differ-
ent populations are assumed to be geographically or reproductively isolated
from each other so that two genes can coalesce only if they are in the same
population. Of course, one can generalize this to allow for more complicated
demographic scenarios, involving population expansion and contraction, dif-
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Figure 5.2: Example simulation for a structured coalescent and associated Wright-
Fisher population model on which the standard multispecies coalescent model is based.
Every circle represents an individual gene while a line connecting two genes represents
an ancestor – descendant relation. Different reproductively isolated populations (with
different population sizes) are shown separated from each other. Note that this is a
simulation for the discrete-time ancestral process of which the standard MSC model is
the continuous-time variant. The colored lines trace back the ancestry of three sampled
genes per extant population. The inset figure in the upper left corner highlights the
induced gene tree topology for the sample, which clearly manifests incomplete lineage
sorting (ILS) with respect to the population/species tree.
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Algorithm 3 MSCGeneTree(𝑆, 𝜙,𝐺, 𝜎)
Require:
1: species tree 𝑆,
2: branch parameters 𝜙 = {𝜙𝑢∶ 𝑢 ∈ 𝑉 (𝑆)},
3: sampled genes 𝐺,
4: gene-to-species map 𝜎∶𝐺 → (𝑆)

Ensure:
5: for each node 𝑢 in a postorder traversal of 𝑆 do
6: if 𝑢 is a leaf node then
7: 𝑔(𝑢) ← {{𝑥} ∈ 𝐺∶ 𝜎(𝑥) = 𝑢}
8: else
9: 𝑔(𝑢) ← 𝑔′(𝑣) ∪ 𝑔′(𝑤), where 𝑣 and 𝑤 are the child nodes of 𝑢.

10: end if
11: 𝑔′(𝑢) ← CensoredCoalescent(𝑔(𝑢), 𝑒𝜙𝑢 )
12: end for

ferent patterns of migration between different populations, hybridization, in-
trogression, polyploidization etc., and inference for such models is an active
topic in population genetics (Beerli and Felsenstein 2001; Gutenkunst et al.
2009; Hey 2010; Roux and Pannell 2015; Excoffier et al. 2021), phylogeogra-
phy (Nielsen and Beaumont 2009; Drummond et al. 2012) and phylogenetics
(Wen, Yu, and Nakhleh 2016; Flouri et al. 2020).

In the present chapter we focus on the standard MSC model, denoted
MSC(𝑆, 𝜙), where we assume a collection of WF populations related by a
strictly bifurcating species tree 𝑆 with leaf set (𝑆). A simulation of such
a collection of WF populations evolving down a species tree is displayed
in fig. 5.2. The standard MSC model is obtained as the continuous-time
ancestral process associated with such a collection of WF populations. We
express the branch lengths 𝜙 of the species tree under the MSC model in
log-coalescent time units (i.e. the length of the time interval spanned by the
branch in units of 𝑁 generations, where 𝑁 is the effective population size of
that particular branch). Under the standard MSC model, every branch of the
species tree is associated with a censored Kingman 𝑛-coalescent (Rannala
and Yang 2003), i.e. a coalescent process which starts at the target vertex
of a given branch and is terminated at the source vertex after a time given
by the associated branch length (algorithm 4). The 𝑘 uncoalesced lineages
then enter the population associated with the parent branch together with 𝑙
uncoalesced lineages of the sister population and the process starts anew,



168

Algorithm 4 CensoredCoalescent(𝐴, 𝑡),
Require:
1: sample of genes 𝐴 = {𝐴1,…𝐴𝑛},
2: branch length 𝑡 in 𝑁𝑒 time units

Ensure:
3: 𝑟 ∼ Exponential(𝑛(𝑛 − 1)∕2)
4: 𝑡 ← 𝑡 − 𝑟
5: while 𝑡 > 0 do
6: Draw two random elements, 𝐴𝑖 and 𝐴𝑗 , without replacement from 𝐴
7: 𝐴 ← (𝐴 − {𝐴𝑖} − {𝐴𝑗}) ∪ {𝐴𝑖 ∪ 𝐴𝑗}
8: 𝑛 ← 𝑛 − 1
9: 𝑟 ∼ Exponential(𝑛(𝑛 − 1)∕2)

10: 𝑡 ← 𝑡 − 𝑟
11: end while
12: return 𝐴

now as a 𝑘 + 𝑙 coalescent (algorithm 3). The branch leading to the root is
taken to be of infinite length, so that the genealogical process associated with
it is the standard Kingman coalescent and terminates at the MRCA of the
multispecies sample.

In the present study, we shall not be interested in branch lengths of gene trees
under the MSC, focusing only on gene tree topologies 𝐺, the sampling distri-
bution of which has been studied in detail in e.g. Degnan and Salter (2005).
Assuming a species tree 𝑆 with branch lengths 𝜙 and a set of extant genes 𝐺
sampled from species of 𝑆, with the map 𝜎∶ 𝐺 → (𝑆) assigning to each
gene the species from which it was sampled, the generative model for a gene
tree topology 𝐺 on 𝐺 under a MSC(𝑆, 𝜙) process is defined according to
algorithms 3 and 4. The process induces a sequence of partitions of the gene
set which is isomorphic to the gene tree topology, which can be obtained by
some additional bookkeeping in algorithms 3 and 4. If we want to refer to the
MSC induced distribution on gene trees for a specific set of sampled leaves𝐺, we also write MSC𝐺

(𝑆, 𝜙) (see also eq. 5.1). Finally, note that when
only a single gene is sampled from each species (as is often the case in phylo-
genetic studies), no coalescence events can occur in the terminal branches of
𝑆, and concomitantly, gene trees for such samples do not provide information
about the branch length of the terminal branches.
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5.2 Inference for the MSC model

5.2.1 Overview of existing approaches

As already alluded to above, inference of species trees under theMSC has been
one of the most active areas of methodological development in phylogenetics
throughout the past decade, and many different methods exist. The available
and actively used approaches fall roughly in three camps: (1) joint Bayesian
inference of gene trees and species trees, (2) summary methods which as-
sume gene trees as input data and (3) summary methods based on site patterns
(Xu and Yang 2016; Bryant and Hahn 2020; Mirarab, Nakhleh, and Warnow
2021).2

The first type of methods are theoretically straightforward. After completing
the hierarchical evolutionarymodel in eq. 5.1 by specifying a prior distribution
for 𝑆, 𝜙 and the 𝜃𝑖 (note that this may itself involve a hierarchical model),
statistical inference of both the species tree and gene trees amounts, in theory,
to no more than a straightforward application of Bayesian logic. Specifically,
we arrive at a marginal posterior distribution for 𝑆, 𝜙 which has the form

𝑝(𝑆, 𝜙|𝑋) ∝ 𝑝(𝑆, 𝜙)
𝑛∏
𝑖=1

∫𝐺𝑖

(
∫𝜃𝑖 𝑝(𝑋𝑖|𝐺𝑖, 𝜃𝑖)𝑝(𝜃𝑖)𝑑𝜃𝑖

)
𝑝(𝐺𝑖|𝑆, 𝜙)𝑑𝜃𝑖

Where 𝐺𝑖 is here taken to represent the gene genealogy (i.e. a timetree) for
locus 𝑖. Computationally however, the problem is extremely challenging due
to the awkward geometry of the posterior distribution. Engineering efficient
MCMC proposal kernels, which take into account the correlation between the
species tree and gene tree topologies among other issues, appears to be very
challenging (Rannala and Yang 2017), and MCMC chains are known to show
very poor mixing for these problems. Implementations of the joint Bayesian
inference approach include BPP (Rannala and Yang 2003; Flouri et al. 2018),
StarBeast (Heled and Drummond 2009; Ogilvie, Bouckaert, and Drummond
2017) and RevBayes (Höhna et al. 2016).

The main advantage of these approaches is that they are statistically efficient,
2We are here glossing over several approaches which do not fall readily in any of these classes.

In particular, SNAPP (Bryant et al. 2012) and SNAPPER (Stoltz et al. 2021) enable Bayesian
inference of species trees from unlinked biallelic markers without explicitly dealing with gene
trees. We also note that PoMo (De Maio, Schrempf, and Kosiol 2015; Borges et al. 2021),
although technically not assuming the MSC model, is another approach for conducting inference
of species trees from multi-locus data sets in the presence of ILS.
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using most of the available information in a single inferential procedure, carry-
ing uncertainty through the complete hierarchical model under the guarantees
of Bayesian coherence3. In addition, while many of the summary methods
(see below) focus only on species tree inference, the full Bayesian approach
provides estimates of gene tree topologies, substitution rates, ancestral effec-
tive population sizes, and all other parameters one manages to include in the
hierarchical evolutionary model. In particular with respect to gene trees this is
interesting, as in the joint estimation setting the species tree provides informa-
tion about the gene trees (and vice versa), and the latter are often challenging to
reliably estimate (Szöllősi et al. 2015). Note that this is a double-edged sword,
since to the extent that the assumptions of the MSC model are violated, the
inferred gene trees will be more or less biased. A flipside of the comprehen-
sive nature of joint inference methods, besides the computational issues, is
that we have to take everything on board: we have to devise a prior for a dated
species tree, for the molecular clock, for substitution rate heterogeneity across
and within loci, etc. Of course, this is not a bug but a feature, as it forces us to
be explicit about the manifold assumptions at stake. However, in combination
with the computational demands of these models, the complexity of the whole
approach may become a serious impediment to a smooth ‘Bayesian workflow’
(Gelman et al. 2020).

The second class of methods, referred to as summary methods (or sometimes
‘shortcut methods’; Springer and Gatesy (2016)), rely on standard phyloge-
netic tools to infer gene tree topologies, and assume these topologies as data
for inference under the MSC. The likelihood of a gene tree topology (i.e. an
undated cladogram) under the MSC model is however intractable, requiring
the enumeration of all ‘coalescent histories’ compatible with a given gene tree
(Degnan and Salter 2005; Wu 2012, 2016), so that these approaches rely on ap-
proximate inference methods based on summary statistics such as rooted triple
(Liu, Yu, and Edwards 2010) or quartet frequencies (Mirarab et al. 2014) (but
see Wu (2012) and Wu (2016) for an implementation of maximum likelihood

3It should be noted here that while the joint Bayesian inference approach indeed allows for a
much more adequate quantification of uncertainty in parameter and model estimates than other
methods considered here, the extent to which uncertainty is taken into account should not be ex-
aggerated. As we have noted before, many data processing steps separate the ‘raw’ data from the
input data for these methods (a set of aligned sequences) which are not taken up in the Bayesian
hierarchical model (think of base calling, sequence assembly, gene annotation, orthogroup in-
ference, multiple sequence alignment, etc.). Also, Bayesian theoretical guarantees are only as
nice as our posterior approximations are accurate, so computational issues can not entirely be
separated from these considerations. “[…] what’s the motivation for modeling everything prob-
abilistically? Sure, it’s coherent – but so is some mental patient who thinks he’s Napoleon and
acts daily according to that belief.” – Andrew Gelman



171

species tree inference from gene tree topologies using the exact MSC likeli-
hood). The unifying idea is to compare the observed frequencies of quartets
or triplets with the expected frequencies under the MSC model and search for
the species tree which fits the observed frequencies best. While statistically
less efficient than a joint Bayesian inference approach, many of these methods
can be proven to give statistically consistent results under the MSC model,
provided they are applied using accurate gene trees as input data. ASTRAL
(Mirarab et al. 2014; Chao Zhang et al. 2018; Zhang et al. 2020) is arguably
the most popular summary method to date, and has been used in many recent
large-scale phylogenomics studies (e.g. Leebens-Mack et al. 2019; Jarvis et
al. 2014; Prum et al. 2015). ASTRAL uses a dynamic programming algo-
rithm with some additional heuristics to identify the species tree which max-
imizes the number of quartets shared by an input set of unrooted gene trees,
a strategy which, provided the gene trees are correct, results in a statistically
consistent estimator of the species tree under the MSC. Unreliable input gene
tree data presents however a considerable challenge to these summary meth-
ods (Springer and Gatesy 2016; Bryant and Hahn 2020). Recall in particular
that under the MSC model, we assume no recombination within a locus, so
that it is preferable to analyze relatively short sequences. Gene tree estima-
tors for short sequence alignments will however have a high variance, causing
problems for summary methods. We note that heuristic methods to account
for gene tree uncertainty have recently been proposed for ASTRAL (Zhang
and Mirarab 2022).

Both of the above classes of methods focus on modeling gene trees as the
unit of analysis, either assumed to be given as input data or modeled as latent
variables. Hence, the loci to which theMSCmodel is applied are genes, where
a ‘gene’ is typically taken to be a protein-coding DNA sequence or sometimes
an exon in this context, so that the assumption of no recombination becomes
potentially problematic. The third class of methods, of which we name only
SVDQuartets (Chifman and Kubatko 2014), adopts a rather different approach
which circumvents this issue, using a collection of (putatively) unlinked sites
as loci assumed to be evolving under the MSC. Quartet trees are determined
based on site pattern counts for these loci, and the species tree is inferred
using a method based on phylogenetic invariants (Felsenstein 2004). We will
not consider these methods here further.
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5.2.2 Motivation for a likelihood-free Bayesian approach

The intractability of the MSC likelihood for gene tree topologies 𝑝(𝐺|𝑆, 𝜙)
forcesmethodswhich use gene trees as input data to rely on summary statistics,
which are not sufficient statistics for the MSC model. While the likelihood is
intractable to evaluate, it is, however, extremely straightforward to simulate
gene trees under theMSCmodel (algorithm 3), suggesting that likelihood-free
approximate Bayesian computation (ABC) approaches may provide an inter-
esting alternative (see Appendix A). ABC methods relying on the efficient
simulation of genealogies under the coalescent have been the main approach
for demographic inference under structured coalescent models in population
genetics4, and it is somewhat remarkable that their use in phylogenetic appli-
cations has not been considered extensively so far. Depending on the ABC
approach taken, such methods have the potential to be more computationally
efficient than joint Bayesian inference methods, while at the same time they
may (but need not) be able to take into account uncertainty in the input gene
tree data. In addition, likelihood-free methods may generalize more easily
to more complicated models, such as the multi-species network coalescent
(MSNC) (Wen, Yu, and Nakhleh 2016), the multilocus multispecies coales-
cent (MLMSC) (Rasmussen and Kellis 2012; Li et al. 2021) or MSC models
with allopolyploid hybridization (see below).

There are multiple potentially fruitful avenues for likelihood-free phylogenetic
inference for the MSC and cognate models. Fan and Kubatko (2011) explored
a basic ABC approach where they simulated species trees and enumerate the
distribution over gene trees, using the 𝜒2 distance between the expected and
observed gene tree distribution as an ABC kernel. Note that this method does
not make use of the fact that gene trees can be efficiently simulated, relying
on a computationally intensive enumeration of the MSC-induced gene tree
distribution which is intractable for even moderately sized species trees5. An
obvious solution would be to approximate the expected gene tree distribution
using simulation, however, a naive application of this idea will not work very
well. As the simulated gene trees will usually not span the full tree space, the
𝜒2 distance or Kullback-Leibler (KL) divergence will often diverge, and the
algorithm will not be stable unless a huge number of gene trees are simulated.

4For a nice overview of how the history of ABC approaches in Bayesian statistics is intimately
related to challenging statistical problems that arose in population genetics, see Tavaré (2018).

5The program hybrid-coal (Zhu and Degnan 2017) takes about 4.2 seconds to enumerate
the probabilities for the 135135 gene trees on eight taxa. The ABC method of Fan and Kubatko
(2011) hence becomes quite useless already for only a few taxa.
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Figure 5.3: CCD approximation to theMSC-induced gene tree distribution for an eight-
taxon species tree, using different prior distributions for the CCD estimator. Every dot
represents a gene tree with probability > 10−9, with gene tree probabilities computed
using hybcoal (Zhu and Degnan 2017). The 𝑥-coordinate shows the true gene tree
probability on a log10 scale, while the 𝑦-coordinate corresponds to the gene tree prob-
ability approximated by a CCD posterior derived from a sample of 10000 gene trees
assuming a 𝛽-splitting Dirichlet-CCD prior with prior weight 𝛼. For this particular
example, we found that 𝛼 = 0.38 and 𝛽 = 2.8 minimizes the KL divergence between
the CCD approximation and the true gene tree distribution.
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By using the tree smoothing methods described in the previous chapter we
could however salvage this approach, using a CCDwith full support to approx-
imate theMSC-induced gene tree distribution. The same idea could be used in
a Bayesian synthetic likelihood approach (Wood 2010; Drovandi et al. 2018),
where we substitute the intractable MSC likelihood by a CCD likelihood (the
‘synthetic likelihood’), with the CCD estimated from simulated gene trees un-
der the model. This synthetic likelihood can then be used in a standard algo-
rithm such asMCMC for sampling from the posterior distribution over species
trees. In fig. 5.3, we show to what extent such a CCD could approximate the
MSC likelihood for different parameterizations of the CCD prior, by compar-
ing the synthetic against the analytic likelihood for gene tree topologies on an
eight-taxon species tree. There are several drawbacks to Bayesian synthetic
likelihood or related ABC approaches. Besides the general computational and
statistical problems with using noisy likelihood estimators, the approach also
does not readily generalize to a situation where the taxonomic composition
across loci differs, due to missing data or gene loss for instance, which is usu-
ally the case. While we have experimented with these approaches, we will not
explore these in this chapter, and defer a detailed study to future work.

The flexibility of ABC approaches for likelihood-free inference leads to many
other potentially viable strategies to unlock simulation-based inference un-
der the MSC. In the remainder of this chapter, we describe a new approach
for joint species tree inference and gene tree reconciliation under the MSC,
based on likelihood-free expectation propagation (EP), also known as EP-
ABC (Barthelmé and Chopin 2014). EP approximates a posterior distribution
in a data-partitioned way, updating a variational approximation of the pos-
terior data point by data point. This avoids the need to simulate the entire
phylogenomic forest and the need to devise an ABC kernel for comparing the
simulated and observed data in a genome-wide fashion. Our new approach
makes use of the properties of the conditional clade distribution (CCD) de-
scribed in chapter 4, both to take into account gene tree uncertainty and to
approximate the posterior distribution over species trees.

5.3 Likelihood-free expectation propagation for the MSC

5.3.1 Overview of the likelihood-free EP approach

Let 𝑦 = (𝑦1,… 𝑦𝑛) denote the data set consisting of 𝑛 loci, where 𝑦𝑖 is the
gene tree topology for locus 𝑖, assumed to be known without error (we will
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deal with gene tree uncertainty later). Assuming the sampling distribution for
the true gene tree topologies to be given by an MSC model, our central goal
is to infer the species tree topology 𝑆 and log-scale branch lengths 𝜙. We
assume the posterior distribution for (𝑆, 𝜙) can be written as

𝑝(𝑆, 𝜙|𝑦) = 1
𝑍
𝑝(𝑦|𝑆, 𝜙)𝑝(𝑆, 𝜙) = 1

𝑍
𝑝(𝑆)𝑝(𝜙)

𝑛∏
𝑖=1

𝑝(𝑦𝑖|𝑆, 𝜙) (5.2)

where 𝑍 (the marginal likelihood) is a normalizing constant. The problem
which motivates our approach is the intractability of the likelihood term
𝑝(𝑦𝑖|𝑆, 𝜙). We can alternatively express the posterior as

𝑝(𝑆, 𝜙|𝑦) ∝ 𝑝(𝑆)𝑝(𝜙)∫ 𝛿𝑦(𝑦∗)𝑝(𝑦∗|𝑆, 𝜙)𝑑𝑦∗
= 𝑝(𝑆)𝑝(𝜙)

𝑛∏
𝑖=1

∫ 𝛿𝑦𝑖 (𝑦
∗
𝑖 )𝑝(𝑦

∗
𝑖 |𝑆, 𝜙)𝑑𝑦∗𝑖 (5.3)

where 𝛿 is a Dirac measure. The most common approach for likelihood-free
Bayesian inferencewould then proceed by substituting some summary statistic
𝑠(𝑦) and 𝑠(𝑦∗) for 𝑦 and 𝑦∗ respectively, replacing 𝛿𝑦 by some kernel function
and approximating the resulting integral using some Monte Carlo technique
(e.g. rejection sampling), yielding the usual form of an ABC posterior (Sisson,
Fan, and Beaumont (2018); see Appendix A). In the context of species tree
inference, such an approach was taken by Fan and Kubatko (2011), as was
described above.

We will however adopt an approach due to Barthelmé and Chopin (2014)
based on expectation propagation (EP) (Minka 2001; Seeger 2005; Vehtari
et al. 2020), where we construct a variational approximation to the factorized
posterior in eq. 5.3. EP assumes that the density to be approximated, 𝜋(𝑥)
say, can be factorized as

𝜋(𝑥) = 1
𝑍

𝑛∏
𝑖=0

𝑙𝑖(𝑥) (5.4)

which is clearly the case when 𝜋 is a posterior distribution for a model with
𝑛 iid data points (in which case we have one of the 𝑙𝑖, say 𝑙0, representing the
prior). EP will construct an approximation 𝑞(𝑥) of 𝜋 which admits the same
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factorization

𝑞(𝑥) ∝
𝑛∏
𝑖=0

𝑞𝑖(𝑥)

where 𝑞, the global approximation, is a distribution from an exponential family
and the site approximations 𝑞𝑖 are members of the associated unnormalized ex-
ponential family (Seeger 2005). The EP algorithm then proceeds by iteratively
updating the individual site approximations in such a way that 𝑞 progressively
improves as an approximation of 𝜋. The EP site update algorithm for site 𝑖
has the following general form, given the current approximation 𝑞:

1. Construct the cavity distribution 𝑞−𝑖(𝑥) = 𝑞(𝑥)∕𝑞𝑖(𝑥)
2. Construct the tilted distribution 𝑞∖𝑖(𝑥) = 𝑙𝑖(𝑥)𝑞−𝑖(𝑥)
3. Update 𝑞𝑖 so that 𝑞(𝑥) = 𝑞𝑖(𝑥)𝑞−𝑖(𝑥) approximates 𝑞∖𝑖(𝑥)

(Vehtari et al. 2020). Usually in step (3) the updated 𝑞𝑖 is obtained throughmo-
ment matching, which for 𝑞 in an exponential family amounts to minimizing
the KL divergence between the tilted distribution and the global approxima-
tion with respect to the natural parameter of 𝑞𝑖 (Minka 2001; Seeger 2005).

As Vehtari et al. (2020) stress, there is no compelling reason why in step (3)
one should use moment matching – any numerical or Monte Carlo technique
to approximate 𝑞∖𝑖 may yield a viable EP algorithm. In the likelihood-free
algorithm of Barthelmé and Chopin (2014), the site approximation is also
updated by moment matching, but the moments of the tilted distribution are
now estimated using simulation. Applied specifically to the MSC inference
problem: if we cast eq. 5.3 in the form of eq. 5.4 we will have

𝑙𝑖(𝑆, 𝜙) = ∫ 𝛿𝑦𝑖 (𝑦
∗
𝑖 )𝑝(𝑦

∗
𝑖 |𝑆, 𝜙)𝑑𝑦∗𝑖

and we can express the tilted distribution as

𝑞∖𝑖(𝑆, 𝜙) ∝ 𝑞−𝑖(𝑆, 𝜙)∫ 𝛿𝑦𝑖 (𝑦
∗
𝑖 )𝑝(𝑦

∗
𝑖 |𝑆, 𝜙)𝑑𝑦∗𝑖 (5.5)

Given that we can simulate (𝑆, 𝜙) from the cavity distribution 𝑞−𝑖, that the
MSC model admits efficient simulation of 𝑦∗𝑖 ∼ 𝑝(⋅|𝑆, 𝜙) and that ℙ(𝑦∗𝑖 =
𝑦𝑖) > 0, we can approximate the tilted distribution using simulation, and use
moment matching (or another strategy) to update 𝑞𝑖 based on the sample from
the tilted distribution. The challenge now remains to devise a suitable expo-
nential family of distributions 𝑞 which can be used to approximate eq. 5.2.
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The EP approach also provides an approximation for the marginal likelihood
(also known as the evidence), provided we can evaluate the marginal log-
likelihood Φ(𝑆, 𝜙) (also called log-partition function) for a member of the
variational family. This is of course very useful for model selection purposes,
allowing one to compute Bayes factors for competing species tree topologies
for instance. To see this, we write the EP approximation with site-specific
normalizing constants (here for a generic argument 𝑥)

𝑞(𝑥) = 𝑝(𝑥)
𝑛∏
𝑖=1

𝑞𝑖(𝑥)
𝐶𝑖

Seeger (2005) showed that one can update the approximation for 𝐶𝑖 using the
following relation

log𝐶𝑖 = log𝑍∖𝑖 − Φ(𝑥) + Φ−𝑖(𝑥)

where Φ−𝑖 is the log-partition function for the cavity distribution, and 𝑍∖𝑖 is
the normalizing constant of the tilted distribution. Provided we can approx-
imate the latter using Monte Carlo simulation, we can update the site-wise
contributions to the marginal likelihood and approximate the marginal likeli-
hood under the model, the latter being given by

log𝑍 ≈
𝑛∑
𝑖=1

log𝐶𝑖 + Φ(𝑥) − Φ0(𝑥)

where Φ0 is the log-partition function for the prior (Seeger 2005).

5.3.2 Use of the CCD as variational approximation

We now discuss how the conditional clade distribution (CCD) introduced in
the previous chapter gives rise to a suitable family of distributions over clado-
grams which we can use in a likelihood-free EP algorithm. Crucially for our
EP approach, the CCD model for a set of 𝑚 taxa  constitutes an exponential
family, as is easily seen by considering that its distribution is equivalent to a
product of 2𝑚 − 𝑚 −

(𝑚
2

)
− 1 categorical distributions (one for each clade 𝛾

for which |𝛾| > 2, resulting in a total of (3𝑚) parameters). This means its
density (or probability mass function) can be expressed in the form

𝑓 (𝑥|𝜂) = exp(𝜂𝑇 𝑡(𝑥) − Φ(𝜂))
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where 𝜂 is called the natural parameter of the family 𝑓 , 𝑡(𝑥) is the sufficient
statistic andΦ is the log-normalizer. The natural parameter is associated with
the moment parameter 𝜃 by an invertible transformation. In the CCD case,
this means that for a clade 𝛾 with conditional split distribution given by the
moment parameter 𝜃𝛾 , the associated natural parameter 𝜂 ∈ ℝ#𝛾−1 will be

𝜂𝛾 = (𝜂𝛾,1,… , 𝜂𝛾,#𝛾−1) =
(
log

𝜃𝛾,1
𝜃𝛾,#𝛾

,… , log
𝜃𝛾,#𝛾−1
𝜃𝛾,#𝛾

)
Note that the operations required for performing a site update in the EP algo-
rithm are particularly straightforward in natural parameter space, the natural
parameter 𝜂−𝑖 of the cavity distribution being related to the natural parameter
of the global approximation 𝜂 and site approximation 𝜂𝑖 as 𝜂 − 𝜂𝑖.

To obtain an exponential family which can approximate the species tree pos-
terior, we assume the posterior approximation 𝑞 factors as

𝑞(𝑆, 𝜙) = 𝑞𝜂(𝑆)𝑞𝜁 (𝜙) ∝
𝑛∏
𝑖=0

𝑞𝜂,𝑖(𝑆)𝑞𝜁,𝑖(𝜙) (5.6)

Here 𝑞𝜂(𝑆) will be a CCD with natural parameter 𝜂 as discussed above,
whereas we use for 𝑞𝜁 (𝜙) a multivariate Gaussian distribution with
mean 𝜇 = (𝜇𝛾,𝛿∶ 𝛾 ⊂ , 𝛿 ⊂ 𝛾) and covariance matrix 𝜎2𝐼 with
𝜎2 = (𝜎2𝛾,𝛿∶ 𝛾 ⊂ , 𝛿 ⊂ 𝛾). We denote the natural parameter of the
multivariate Gaussian factor of 𝑞 by 𝜁 . It is important to stress that the
family defined by eq. 5.6 consists of joint distributions over the entire species
tree space, which are not defined in terms of a more intuitive conditional
structure (e.g. as in Zhang et al. 2020), where we would have a similar CCD
model for the 𝑚-taxon species tree 𝑆, and conditional on a particular 𝑆 a
multivariate Gaussian for the 2𝑚 − 2 branches in 𝑆. To see that our model
does not have such a structure, note that a random draw from a distribution
in the family defined by eq. 5.6 formally consists of a species tree topology
and a vector of (3𝑚) real numbers (two for each possible split). Of course
we need only explicitly represent the 2𝑚 − 2 relevant branch lengths when
performing computations, however, it is important to take into account the
full space when estimating a new distribution in the family (for instance
through moment matching).
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5.3.3 Implementation of the likelihood-free EP algorithm

With our variational family in hand we return to step (3) of the EP algorithm.
Following Barthelmé and Chopin (2014), we can use a rejection sampling
approach as in algorithm 5 to approximate the tilted distribution for each site
𝑖, corresponding to data point 𝑦𝑖. The accepted simulations will constitute a
sample from the tilted distribution 𝑞∖𝑖(𝑆, 𝜙) (eq. 5.5). We then approximate
the tilted distribution within the exponential family 𝑞 by estimating a CCD
from the accepted 𝑆(𝑗) to obtain an estimate of the natural parameter of the
tilted distribution �̂�∖𝑖 and using moment matching to estimate 𝜁∖𝑖.

We use the Bayes CCD estimator discussed in chapter 4 under a 𝛽-splitting
Dirichlet-CCD prior with parameters 𝛼 and 𝛽 to estimate the CCD from the
accepted species tree simulations, ensuring the approximation has the com-
plete tree space as support. For 𝛽 we use the same value as for the CCD prior
for the species tree, whereas 𝛼 is a user-defined parameter. We then update 𝑞
using a convex combination of the approximation to the tilted distribution and
the previous global approximation, i.e. 𝜂′ = (1 − 𝜆)𝜂 + 𝜆�̂�∖𝑖 and similarly for
𝜁 . The site approximation is then updated accordingly. Note that both 𝛼 and 𝜆
are parameters which affect the ‘learning rate’ of the EP algorithm: choosing
larger 𝛼 will cause the tilted distribution approximations to be more strongly
shrunk towards the prior CCD, whereas a smaller 𝜆 will lead to a less dras-
tic update of the global approximation for each site iteration. Unless stated
otherwise, we use 𝜆 = 0.1 and 𝛼 = 10−4 in our experiments below. We also
implemented an EP algorithm for fixed species tree topologies with a mul-
tivariate Gaussian on ℝ2𝑚−2 as variational family for the branch parameters,
using the same algorithmic approaches for approximating the tilted distribu-
tion and performing EP updates.

Algorithm 5 Rejection sampling for approximation of 𝑞∖𝑖
1: for 𝑗 = 1,… ,𝑀 do
2: Simulate a draw from the cavity distribution (𝑆(𝑗), 𝜙(𝑗)) ∼ 𝑞−𝑖
3: Simulate a gene tree on the leaf set of locus 𝑖, 𝑦∗𝑖 ∼ 𝑝(⋅|𝑆(𝑗), 𝜙(𝑗))
4: Accept (𝑆(𝑗), 𝜙(𝑗)) with probability 𝛿𝑦𝑖 (𝑦

∗
𝑖 )

5: end for
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5.3.4 Accounting for gene tree uncertainty

In the above, we have assumed that the data consists of gene tree topologies for
𝑛 loci, known without error. This is an unrealistic situation, since in practice
gene trees are usually inferred from molecular sequence data using statisti-
cal phylogenetic methods. This is of course the main problem shared by all
summary methods, however, in the EP approach described above this can be
accounted for in a rather natural way. To alleviate the issue, we assume in-
stead that the true tree topology 𝑌𝑖 for locus 𝑖 is unknown, and that we have
a probability distribution 𝜉𝑖 over gene tree topologies at our disposal which
adequately describes our uncertainty about 𝑌𝑖, so that eq. 5.3 becomes

𝑝(𝑆, 𝜙|𝑦) = 𝑝(𝑆)𝑝(𝜙)
𝑛∏
𝑖=1

∫ 𝜉𝑖(𝑦∗𝑖 )𝑝(𝑦
∗
𝑖 |𝑆, 𝜙)𝑑𝑦∗𝑖 (5.7)

Where we assume 𝜉𝑖(𝑦∗𝑖 ) ≈ ℙ{𝑌𝑖 = 𝑦∗𝑖 }. The same substitution of 𝜉𝑖 for 𝛿𝑦𝑖
applies to eq. 5.5 and line 4 in algorithm 5 of course. Here 𝜉𝑖 could be derived
from a sample from the posterior distribution over gene trees under some stan-
dard phylogenetic CTMC model of evolution, obtained using for instance Mr-
Bayes or RevBayes (Ronquist et al. 2012a; Höhna et al. 2016). Alternatively,
a sample of trees could be obtained using nonparametric bootstrapping meth-
ods (Hoang et al. 2018; Chao Zhang et al. 2018). The sample could be used as
such (i.e. using the sample frequencies as estimates of the tree probabilities) or
a smoothed distribution such as a CCD or a subsplit Bayesian network (SBN;
Cheng Zhang and Matsen IV (2018a)) could be used. Note that 𝜉𝑖 assumes
the role of the kernel function the ABC context (Appendix A).

5.3.5 Improving the tilted approximation

The efficiency of the whole strategy will depend crucially on how efficiently
we manage to approximate the tilted distribution. For trees of appreciable size
and weakly informative or non-informative priors for 𝑆, the acceptance prob-
ability in the rejection sampling algorithm may be very low, in which case
it may take a very long time before we get to a reasonable posterior approx-
imation 𝑞. The simulation-based approximation of the tilted distribution is
however a fairly standard ABC problem, so in principle we can use the whole
battery of ABC approaches that have been developed (see Sisson, Fan, and
Beaumont 2018, chap. 4, for an overview).

Approaches based on importance sampling (IS) may alleviate efficiency issues
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Algorithm 6 SIS with rejection control for approximation of 𝑞∖𝑖
Require:
1: gene tree probability distribution 𝜉𝑖
2: cavity distribution 𝑞−𝑖
3: number of particles 𝑀
4: rejection threshold 𝑐
5: stopping rule

Ensure:
6: 𝑔 ← 𝑞−𝑖
7: while stopping rule not satisfied do
8: for 𝑗 = 1,… ,𝑀 do
9: Simulate species tree (𝑆𝑗 , 𝜙𝑗) ∼ 𝑔

10: Simulate gene tree 𝑦∗𝑖 ∼ 𝑝𝑖(⋅|𝑆𝑗 , 𝜙𝑗)
11: Compute importance weight 𝑤𝑗 ← 𝜉𝑖(𝑦∗𝑖 )𝑞−𝑖(𝑆𝑗 , 𝜙𝑗)∕𝑔(𝑆𝑗 , 𝜙𝑗)
12: Accept (𝑆𝑗 , 𝜙𝑗) with probability 𝑟𝑗 = min(1, 𝑤𝑗∕𝑐)
13: Update importance weight 𝑤𝑗 ← 𝑤𝑗∕𝑟𝑗
14: end for
15: Construct a new 𝑔 from the accepted (𝑤,𝑆, 𝜙)
16: end while
17: return the final accepted (𝑤,𝑆, 𝜙) as a weighted sample from 𝑞∖𝑖

to some extent, but require careful monitoring of importance weights in order
to obtain a stable approximation. A basic IS approach uses 𝜉𝑖(𝑦∗𝑖 ) as an impor-
tance weight for each simulated (𝑆(𝑗), 𝜙(𝑗)) pair. This importance sampling
step integrates nicely with the recycling technique of Barthelmé and Chopin
(2014), which leads to additional computational gains. More sophisticated
IS approaches such as sequential importance sampling (SIS) rejection-control
IS (Liu, Chen, and Wong 1998; Liu 2001; Peters, Fan, and Sisson 2012) or
sequential Monte Carlo (SMC) can further improve the approximation of the
tilted distribution for a given computational budget. In our experiments below,
we use a SIS algorithm with rejection control, along the lines of algorithm 6,
where we select a rejection threshold dynamically based on some quantile of
the importance weight distribution. We refer to this algorithm as EP-ABC-
SIS. As a stopping rule we use a threshold on the effective sample size (ESS)
as defined by Kong (1992)

ESS =
( 𝑀∑

𝑗=1
𝑤2

𝑗

)−1
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which is widely used in importance sampling applications, together with a
maximum number of SIS steps. When the final set of importance weights does
not reach a specified minimum ESS threshold, the site update has failed, and
we let the EP algorithm proceed to the next site. If a particular site consistently
fails to be updated across subsequent EP passes, the locus under consideration
will not contribute to the posterior approximation. Depending on one’s point
of view, this could be considered a bug or a feature, as this results in a kind of
automatic detection, and discarding, of outlier loci. Another strategy which
avoids this would be to continue sampling until some minimum number of
accepted simulations is reached, without setting a hard upper bound on the
number of simulation replicates. In our specific application, such a strategy
risks however to spend a lot of computational time on outlier gene families
which strongly violate the MSC model assumptions – leading to the less than
desirable situation where most time is spend making our inferences more bi-
ased due to model violations.

Another strategy for approximating the tilted distribution would be to use an
MCMC sampler. Starting from an initial sample from the cavity, we could
sample from the tilted distribution by applying anMCMC transition kernel for
a specified number of iterations. While we will not pursue this strategy here,
we note that this may further alleviate issues that arise from applying IS-based
algorithms to high-dimensional target distributions, and would definitely be a
worthwhile avenue for further algorithmic improvements.

5.4 Applications of the EP approach

5.4.1 Simulation experiments

For small trees of three or four taxa, it is straightforward to approximate the
posterior distribution by numerical quadrature, enabling a detailed verification
of the correctness of the implementation and quality of the EP approximation.
fig. 5.4 shows the EP approximation for a simulated data set consisting of 200
gene families from an unbalanced four-taxon phylogeny, obtained using the
SIS algorithm with 𝑀 = 104 and as stopping rule a minimum ESS of 1000
after at most five iterations of the SIS inner loop. We used a Uniform prior
(𝛽 = −1.5) for the species tree, and a Gaussian prior with mean 0 and variance
5 for the log-scale branch parameters. The posterior approximation has prob-
ability mass ≈ 1 on the true species tree, and the gaussian approximation to
the posterior density for the branch parameters matches the true posterior den-



183

Figure 5.4: Simulation experiment for a four-taxon species tree. (A) Comparison of
the joint posterior for the two internal branch lengths computed by numerical quadra-
ture (black lines) with the posterior approximation obtained using the EP-ABC-SIS
algorithm (colored contour plot). The vertical and horizontal lines mark the poste-
rior mean for each parameter for both the posterior computed by quadrature and the
EP posterior. (B) Marginal posterior densities for the two internal branch lengths for
the posterior computed by quadrature 𝑝(𝜙|𝑦) and the EP posterior approximation 𝑞(𝜙).
The dotted lines mark the true (simulated) values. The prior density 𝑝(𝜙) is shown as
well. (C) Trace plot of the marginal likelihood estimator throughout 10 passes of the
EP algorithm. The marginal likelihood computed by quadrature is indicated by the
dotted line.

sity extremely well (fig. 5.4 A,B). We find that the algorithm converges quite
rapidly, with the approximation stabilizing after about two full EP passes over
the data (fig. 5.4 C). Furthermore, we find that the EP algorithm provides a
fair approximation to the marginal likelihood

∑
𝑆 ∫𝜙 𝑝(𝑦, 𝑆, 𝜙) in the three and

four-taxon problems where we can compute the latter by numerical quadrature.

We next assessed the performance of the EP algorithmwith the SIS sampler on
a 10-taxon species tree, simulated from a 𝛽-splitting distribution with 𝛽 = −1
and with log-scale internal branch lengths sampled from a mixture of two
normal distributions, one with mean log 0.5 and weight 0.2 and another with
mean log 3 and weight 0.8, with both components having variance 0.5. We
use the same prior and algorithm settings as before, except for using𝑀 = 105.
The EP posterior is displayed in fig. 5.5, together with the simulated species
tree. We find that the algorithm retrieves the correct species tree and provides
a posterior distribution for the branch lengths compatible with the simulated
branch parameters.

5.4.2 Yeast data set

We analyzed the rather famous data set of Rokas et al. (2003) using the pro-
posed likelihood-free EP algorithm. This data set consists of 106 protein-
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Figure 5.5: EP posterior approximation for 100 loci simulated from a 10 taxon species
tree. The species tree is shown on the left, with branch lengths in𝑁𝑒 generations. Note
that the terminal branch lengths are not meaningful. The Gaussian approximations to
the marginal posterior distribution of the log-scale branch length for each of the eight
internal branches is shown, with the true (simulated) branch length indicated by the
dotted gray line. The posterior probability of the true species tree was ≈ 1.

coding genes from seven budding yeast (Saccharomyces) species and one out-
group (Candida albicans) and was one of the first empirical data sets to draw
broad attention to the issues of heterogeneity in gene trees across the genome
in phylogenetic inference.

We investigate the effect of taking into account gene tree uncertainty by con-
ducting the analysis using tree topologies inferred by maximum likelihood
(using IQ-TREE (Minh et al. 2020), with the GTR + Γ4 model) on the one
hand, and using empirical CCDs estimated fromMCMC samples on the other.
To estimate the CCDs, we sampled 10000 tree topologies under theGTR+Γ4
model and default prior settings inMrBayes (Ronquist et al. 2012b) (sampling
a tree every 50 iterations for a total of 550000 iterations, discarding 1000 sam-
ples as burn-in). We use a uniform prior for 𝑆 and a Gaussian distribution
with mean log 2 and variance 5 for the log-scale branch parameters, and use
the SIS algorithm with 𝑀 = 10000 and default settings for conducting EP.

MAP species trees inferred using the EP algorithm for both data sets are shown
in fig. 5.6 (A) and (C). Notably, both analyses result consistently in a poste-
rior approximation which concentrates on a single tree topology, but which
differs for the two data sets. We refer to the MAP tree for the CCD data and
ML gene tree data as topology 1 and 2 respectively. We also ran the EP algo-
rithm with a fixed species tree topology, analyzing both data sets assuming the
MAP species tree inferred for the other data set (fig. 5.6 B & D), which con-
firms that indeed both data sets are significantly better fit by different species
tree topologies. Note that both topologies have appeared in previous studies
(e.g. Edwards, Liu, and Pearl 2007; Fan and Kubatko 2011; Flouri et al. 2020),
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Figure 5.6: Analysis of the Rokas et al. (2003) yeast data set using the EP algorithm.
(A)MAP species tree usingMCMC-derived CCDs as input data. (B) Species tree with
MAP branch lengths based on the CCD input data for the tree (tree 2) in (C). (C) MAP
species tree using ML gene trees as input data. (D) Species tree with MAP branch
lengths for the tree in (A) (tree 1) using ML gene trees as input data. The estimated
marginal log-likelihoods are −242, −283, −549 and < −606 respectively. One unit
along the 𝑥-axis represents 10𝑁𝑒 generations. (E) Ordered site-wise contributions 𝐶𝑖
to the marginal likelihood for the four different analyses associated with (A-D). The
ordering is different for each analysis. (F) 𝐶𝑖 for the CCD based analyses, with sites
in the same order. (G) 𝐶𝑖 for the ML based analyses, with sites in the same order. All
analyses were performed using the EP-ABC-SIS algorithm with a uniform species tree
prior (𝛽 = −1.5) and a  (log(2), 5) prior for the log-scale coalescent branch lengths,
performing five passes over the data.

one of which (Flouri et al. 2020) suggesting that some of the observed gene
tree heterogeneity is due to introgression between the S. kudriavzevii and S.
bayanus lineages.

Unsurprisingly, an inspection of the site-wise contribution to the marginal
likelihood indicates a markedly better fit of the MSC model when taking into
account gene tree uncertainty (fig. 5.6 E), and shows that for the CCD-based
analysis theMAP tree does seem to provide an improved fit across much of the
data (fig. 5.6 F). Note that, while for the analyses based on theML tree data the
marginal likelihood cannot be reliably estimated, the site-wise contributions
are still informative to estimate an upper bound to the marginal likelihood and
visually compare model fit. For the ML tree input data, we see that many
loci are actually better explained by the species tree topology 1, and that the
posterior concentration on the topology 2 appears to be driven by a handful of
genes which are highly unlikely under topology 1 but not so under topology
2. Also telling is the posterior expectation for the sum of the internal branch
lengths, which we estimate at 119 with 95% uncertainty interval (47, 262)
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Figure 5.7: Marginal posterior approximation for the log-scale coalescent branch
lengths for the Rokas et al. (2003) data set, using MCMC-derived CCDs as input
data (analysis associated with MAP tree (A) in fig. 5.6). The Gaussian approxima-
tion obtained with the standard EP-ABC-SIS algorithm is shown for each of the six
internal branches in black. The Gaussian densities in green show the marginal poste-
rior approximations obtained with the full multivariate Gaussian approximating family
(with the species tree held fixed in the EP algorithm). The gray density shows the prior
distribution.

for the CCD-based analysis, compared to 64 (29, 126) for the analysis based
on ML trees (both in 𝑁𝑒 units). This clearly shows the strong bias towards
higher inferred degrees of discordance when not taking into account gene tree
uncertainty.

In fig. 5.7 we show the Gaussian posterior approximations for the branch
parameters for the CCD-based analysis. From these plots we can conclude
that for long species tree branches, as expected, there is little information in
the data to estimate the branch length with high precision. Finally, we also
implemented the same EP-ABC-SIS algorithm for fixed species trees with a
full multivariate Gaussian distribution as approximating family for the branch
length posterior (i.e. with non-zero covariance terms), and compare the result-
ing EP posterior to our simpler model with independent Gaussian components
(fig. 5.7). The marginal posterior approximations for both analysis agree very
well, suggesting not much is to be gained by using a more complicated varia-
tional family for the branch parameters
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Figure 5.8: The four most probable trees and their respective probabilities for the prior
distribution constructed from ASTRAL species trees. The ASTRAL trees were in-
ferred from bootstrap samples of gene trees from the Chiari et al. (2012) data. We
used a 𝛽-splitting Dirichlet-CCD with 𝛽 = −1 and 𝛼 = 10. Most of the variation
seems to involve the relationships within lepidosaurs and the position of turtles rela-
tive to birds and crocodiles.

5.4.3 The problem with turtles

The position of turtles within the amniote phylogeny has been a longstand-
ing topic of controversy in systematics. Traditional debates centered around
amniote skull morphology, where the anapsid skulls of turtles were assumed
to be the ancestral morphology of diapsid reptilians, an assumption which
became increasingly contested over time. The situation was however not re-
solved immediately with the advent of molecular data sets, with different phy-
logenetic hypotheses receiving decisive statistical support in different studies
(see Brown and Thomson 2017 for an overview of recent phylogenetic studies).
Based on molecular data, turtles have been considered sister to all other rep-
tilians, sister to lepidosaurs (lizards, snakes and tuataras), sister to archosaurs
(birds and crocodolians) or sister to crocodilians (Chiari et al. 2012), although
most studies point to one of the latter two hypotheses. Brown and Thomson
(2017) conducted a detailed study comparing phylogenetic information for var-
ious hypotheses concerning the placement of turtles within the amniote phy-
logeny using different published data sets, showing that different outcomes are
often driven by a handful of loci. In this section, we investigate the data set
of Chiari et al. (2012) (also studied in Brown and Thomson (2017)) using the
EP-ABC-SIS method. This data set consists of 248 loci from 16 taxa spanning
the amniote phylogeny. As input data, we use CCDs estimated from MCMC
samples of gene tree topologies obtained using MrBayes (with the GTR+ Γ4
model and default priors) as for the yeast data set discussed above.

Importantly, when the number of taxa increases, IS-based algorithms may
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Figure 5.9: (A) MAP species tree for the Chiari et al. (2012) data set. (B) Site-
wise contribution 𝐶𝑖 to the marginal likelihood for two independent runs (in yellow
and green) of the EP-ABC-SIS algorithm. Sites are ordered according to the 𝐶𝑖 for
the first run. The tree in the inset of (B) shows the consensus tree for outlier gene
ENSGALG00000002969 with clade credibilities (from the MrBayes MCMC sample) on
a % scale.

have difficulties obtaining reasonable approximations for the tilted distribu-
tion of 𝑆. Besides being inefficient, the algorithm may be sensitive to the
number of particles (𝑀) used, resulting in unstable approximations for insuf-
ficiently large 𝑀 . This can be alleviated to some extent by using more infor-
mative prior distributions, if such information is available – as is usually the
case in phylogenetic problems. Moreover, the CCD prior for the species tree
provides quite some flexibility for constructing prior distributions, without
assigning zero probability to large parts of tree space. One approach would
be to estimate a CCD from the observed gene trees with a strong 𝛽-splitting
Dirichlet-CCD prior (i.e. with large 𝛼). Another, arguably better, approach
would be to use a fast heuristic algorithm such as ASTRAL to infer a col-
lection of species trees for bootstrap samples of gene trees, and to use the in-
ferred species trees to estimate the CCD prior. We use the latter approach here.
Specifically, we constructed 100 data sets where we sampled 1000 loci with
replacement, and for each locus one gene tree from the posterior distribution
under the GTR+Γ4model. We then ran ASTRAL (v5.5.3) on each bootstrap
sample and constructed a CCD from the resulting collection of species trees.
In fig. 5.8 we show the four most probable species trees under a prior obtained
using this strategy.
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Figure 5.10: EP posterior approximation for log-scale coalescent branch lengths of the
MAP species tree inferred for the Chiari et al. (2012) data set. The prior density (a (log 2, 5) distribution) is shown in light gray, while the two colored densities show
the marginal Gaussian posterior approximations obtained from two independent runs
of the EP-ABC-SIS algorithm (with 𝑀 = 50000, performing five passes over the full
data set). The bitstrings above each plot show the clade codes associated with each
branch.

The EP posterior concentrates on the species tree with turtles sister to birds and
crocodilians (Archosauria), and supports the grouping of Anolis and Python
(Toxicofera) with Podarcis sister to this clade (fig. 5.9). The EP posterior
approximation does not vary significantly across independent runs (fig. 5.10),
suggesting the chosen algorithm settings do lead to a stable variational approx-
imation. Note that in the MSC-based analyses of Chiari et al. (2012) (using
MP-EST (Liu, Yu, and Edwards 2010)), the authors found a sister relationship
of turtles to crocodiles using the same loci, but using ML trees without taking
into account gene tree uncertainty. They attributed their results to substitution
saturation, as an analysis using gene trees inferred at the amino acid level re-
sulted in turtles sister to archosaurs, agreeing with their concatenation-based
Bayesian phylogenetic analysis.

Brown and Thomson (2017) however showed that some of the gene trees
which show extremely strong support for a crocodilian sister relationship
likely include paralogous genes, providing an alternative explanation for
these conflicting results. Using the EP results, we also found a number
of outlier loci whose gene trees are highly unlikely under the MSC model
(fig. 5.11). All of these gene families show evolutionarily highly implausible
clades (for instance with paraphyletic mammals or birds), suggestive of false
orthology assignments. Note that none of the loci reported by Brown and
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Figure 5.11: Majority rule consensus trees with clade credibilities from a MrBayes
MCMC sample for the twelve outlier gene families (having 𝐶𝑖 < −20 in either one of
the two EP runs shown in fig. 5.9).

Thomson (2017) to include paralogous clades are signaled as outliers by the
EP results, and they even have a fairly high likelihood under the posterior
MSC model (with 𝐶 values of −13.7 and −8.9), showing that discordance
due to other sources may be wrongly modeled as due to ILS. While the
approach thus clearly signals wildly implausible gene trees under the MSC,
when there is some discordance at some species tree node due to ILS or
variance in the gene tree estimates, it is not possible to flag putative model
violations due to, for instance, paralogy without external information. Clearly,
while the short branch lengths in fig. 5.9 may signal ILS to some extent,
they are highly likely to be significantly biased downwards due to other
sources of discordance, hampering biologically meaningful interpretations
of inferences under the MSC model. This is a recurring (and somewhat
sad) theme in phylogenetic inference, stressing once again the need for
more realistic models of gene family evolution that can deal with the major
sources of evolutionary variation and enable us to learn about the processes
of genome evolution, without simultaneously incurring statistical biases due
to restrictive model assumptions.
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5.4.4 Drosera allopolyploid hybridization

The sundews (Drosera) constitute a large cosmopolitan genus of carnivorous
plants, notorious for their flypaper-like leaf morphology which they use to trap
insects. The evolutionary history of the genus is complicated due to extensive
hybridization, likely both allopolyploid and homoploid in nature (see for in-
stance Brittnacher (2010)). In the context of an ongoing genomic study of the
sundew lineage, the genomes of Drosera capensis and Drosera regia were
sequenced and high-quality genome assemblies were obtained (Renner et al.,
in preparation). Comparative genomic analyses revealed that the D. capensis
genome exhibits a six-fold multiplication with respect to homologous regions
in, for instance, Beta vulgaris (beet), while D. regia shows a clear triplicate
structure (fig. 5.12). D. capensis can further be shown to be derived from a
recent allopolyploid by comparing its genome against, for instance, D. spat-
ulata (see chapter 6), so that its six-fold multiplication level likely derives
from an ancient hexaploid history followed by rediploidization and a more re-
cent allotetraploid phase. The D. regia triplicated structure also likely derives
from an ancient hexaploid phase, however, differences in rates of molecular
evolution and genome rearrangement render it difficult to determine whether
the two lineages share a diploid, tetraploid or hexaploid ancestor (or whatever
combination of those), despite having complete genome assemblies available.

To trace the evolutionary relationships of the nine subgenomes of D. capen-
sis and D. regia, we inferred colinear alignments within the macrosyntenic
clusters shown in fig. 5.12. We identified those colinear blocks for which
six D. capensis homologous regions could be identified and three D. regia
regions (6:3 colinear regions). For each position in the colinear alignment
with more than three anchors, we identified an outgroup gene in Beta vulgaris
and inferred a multiple sequence alignment using MAFFT (Katoh and Stan-
dley 2013). We then inferred gene trees for each individual set of anchors.
Additionally, we constructed for each of the identified 6:3 colinear regions a
concatenated alignment of all anchors within a colinear block and inferred a
phylogeny for each such 6:3 block. All trees were inferred using ML with IQ-
TREE (Minh et al. 2020), using default settings and the GTR + Γ4 model of
sequence evolution. Note that without phasing the different colinear stretches
into their respective subgenomes, we cannot construct a reasonable concate-
nated alignment for the whole data set (for instance, without additional infor-
mation, it is unclear which of the six colinear stretches for D. capensis in one
block should be concatenated to which of the six in another).

The results of this exploratory analysis are displayed in fig. 5.13. With 12
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Figure 5.12: Macrosyntenic analysis of the Drosera capensis and Drosera regia
genomes. We developed a Bayesian segmentation and clustering algorithm for the in-
ference of genome-scale patterns of homology and putative ancestral blocks of genes
(macrosynteny clusters). The method is a generalization of Nakatani and McLysaght
(2017) and will not be presented in this dissertation. The bar graphs on the left show
the chromosomal organization of the two species with homologous regions painted by
macrosyntenic cluster. The scatter plots on the right show the within-genome gene
homology matrix where the relevant genome is represented by the 𝑥-axis, with each 𝑥-
coordinate representing a gene and the black and gray lines representing chromosome
and syntenic segment boundaries respectively. The same genome is represented along
the 𝑦-axis, but with the segments reordered by macrosyntenic cluster (indicated by the
colored regions). Each dot represents a homologous gene.
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Figure 5.13: Phylogenetic analysis of 6:3 colinear regions in Drosera capensis and
Drosera regia. (A) Maximum likelihood tree topologies for concatenated alignments
of 6:3 colinear regions, with associated taxon occupancy matrices for the concatenated
alignments (heatmaps, black/white is presence/absence of an anchor in the taxon label
in the tree aligned with the relevant row). (B) Relationship between gene concordance
factors (gCF) and bootstrap support value (BSV) and (C) gCF and branch length.

distinct topologies for 16 alignments, the situation clearly appears compli-
cated. What we can conclude from these results is that, indeed, theD. capensis
subgenomes come in pairs due to the recent allotetraploidy event in this lin-
eage. However, not much can be said with respect to the events deeper in the
tree, with many different relationships among the three pre-WGD D. capen-
sis lineages and three D. regia subgenomes having some support. What is
clear however is that the molecular distances for branches emanating from the
crown Drosera group are all very small, which suggests (1) that ILS could
be relevant (and concatenation problematic) and (2) that there may be consid-
erable uncertainty in gene tree estimates due to a limited number of substitu-
tions being informative for the branches of interest. Furthermore, note that
the assumption behind the concatenation approach that the genes in a colinear
stretch share the same history may be severely violated here if recombination
between distinct subgenomes after polyploidy is prevalent (but note that this
would also affect the assumption of a single tree being representative for each
individual gene to a lesser extent).

The absence of a reliable phasing of the individual genes into subgenomes
prevents a straightforward analysis of this data set under the MSC model as-
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Figure 5.14: The probability distribution over rooted triples in MUL gene trees for
each of the 49 six-taxon MUL species trees consisting of 2 × 3 subgenomes (labeled
‘1’ and ‘2’) assuming no ILS. There are four kinds of triples in this setting, shown in
Newick format on the right. Note that there are distinct species trees which induce the
same distribution over rooted triples, hence 𝑆 is not identifiable on the basis of the
distribution of rooted triples in observed gene trees.

sumption. An equivalent way to express the problem is that we have no un-
ambiguous gene-to-subgenome map 𝜎, as we do in our usual applications of
the MSC model. What we need is therefore an approach for inference under
the MSC based on multi-labeled gene trees (MUL) trees, where the same leaf
label appears multiple times in a single gene tree (in our case, six leaves are
labeled as D. capensis, whereas three leaves are labeled as D. regia genes).
Joint Bayesian inference of gene trees and species trees would in principle
admit this, using the subgenome phase-swap Markov kernel implemented by
Freyman, Johnson, and Rothfels (2020) in RevBayes (Höhna et al. (2016)).
However, we did not manage to get decently mixing MCMC chains in reason-
able time, neither in a basic concatenation analysis nor in a hierarchical model
under the MSC (even after making further modifications to the Markov kernel
motivated by this specific problem, allowing for instance joint swap moves
for multiple genes), presumably in part due to the nested nature of multiple
ancient genome duplications in this problem. Summary methods for MUL
trees are not available, and will likely not work in general due to identifiabil-
ity issues, as even in the absence of ILS, the species tree appears not to be
identifiable based on the distribution of rooted triples (fig. 5.14).

We adapted the EP approach to enable inference of MUL species trees
from MUL gene trees by making the assumption that all assignments of
genes to subgenomes of their respective species are equally likely a priori,
and simulating gene trees accordingly. This is a rather naive approach,
which does not learn the subgenome phasing explicitly as part of the EP
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Figure 5.15: EP-based inference of a MUL species tree under the MSC for theDrosera
6:3 colinear block data set. The three species tree topologies with near-identical
marginal likelihood estimate are shown. The scalebar is displayed with units of 2𝑁𝑒.
Terminal branch lengths are meaningless.

algorithm, nor considers the possibility of unequal sampling probabilities
for different subgenomes (which would be expected when gene loss during
the complicated rediploidization process is biased across subgenomes). As
often the case in these kind of Bayesian mixture models, the approach also
leads to a strongly multimodal posterior distribution due to the permutation
invariance of the likelihood (i.e. permuting the labels of the subgenomes
within a species does not change the likelihood). Nevertheless, the approach
does seem to provide reasonable results across multiple runs of the EP
algorithm, converging however to a single mode of the posterior.

Applying this approach to the 229 loci with at least six taxa in the 6:3 colinear
block data set (using CCDs derived fromMrBayes MCMC samples as before,
a uniform prior on species tree topologies and a  (log 2, 3) prior for the log-
scale branch lengths), we find that the posterior concentrates on three different
species tree topologies across multiple runs of the EP algorithm (fig. 5.15).
We do not find that the CCD approximation to the posterior distribution of
𝑆 has significant probability mass on all three trees at once, but rather that
it tends to collapse on one of these, signaling potential issues in the EP ap-
proach for joint inference of (𝑆, 𝜙) in this use case. Increasing the number
of particles in the SIS algorithm partly alleviates this problem, but in combi-
nation with the degeneracy of the posterior distribution the problem is hard
to mitigate completely. This problem does not appear of course when we fix
the species tree, so that we can verify suggested species trees by conducting
model comparisons on the basis of estimated marginal likelihood values. We
find that the three species tree topologies have near identical marginal log-
likelihood estimates (�̂� ≈ −1044), suggesting equal posterior probabilities
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Figure 5.16: Example of a possible allopolyploid hybridization network compatible
with the MUL species trees of high posterior probability under the MSC. Speciation
nodes of putative iploid ancestors which can be represented in observed gene trees are
labeled and unshaded, whereas allotetraploidization nodes are displayed in orange and
allohexaploidization nodes in teal. Note that this is but one of the many phylogenetic
networks compatible with the likely MUL species trees. The recent WGD event in D.
capensis is not shown.

for the different species tree topologies. Moreover, we find, as expected, that
the D. capensis subgenomes come in pairs, as a result of the recent allote-
traploidy in this lineage. These results suggest a fairly distinct subclade of
four D. capensis subgenomes, with the other subgenomes involved in a com-
plicated knot. We note that this does seem to agree with our syntenic analyses,
where we often find for a given D. regia segment two D. capensis segments
with somewhat stronger conserved synteny and colinearity, although this is
hard to quantify accurately without dedicated models. A graphical example
of one of the many possible allopolyploid hybridization networks compatible
with these MUL trees is displayed in fig. 5.16

Of course, even if we ignore the problems with multimodal posteriors, the
statistical analysis presented in the preceding paragraphs is highly tentative,
and should be interpreted cautiously. For one, it remains to be shown that the
discordance in this data set is actually due to ILS and can be adequately mod-
eled by the MSC. Moreover, we make the assumption that, while the species
level phylogeny is a network, the subgenome phylogeny remains a tree. If
allopolyploid hybridization among distinct lineages is common however, we
may expect ongoing introgression to be common as well, which would violate
this assumption. Another important, and also rather likely, model violation
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would be gene conversion among homeologs (homologous genes on distinct
subgenomes) within a species. Lastly, we have to mention the fact that the
identification of homologs from distinct subgenomes is itself fairly compli-
cated, and we should leave open the possibility that even in the completely
unrealistic case where all modeling assumptions would hold for true home-
ologs, our sampled genes do not in fact conform to such an idealized set of
loci. Clearly, if we want to adequately model these processes, we stand in
need of more integrative models of genome evolution that are currently want-
ing. Such complicated models, if one is able to formally state them, are how-
ever not likely to have tractable likelihood functions (a simple model like the
MSC even has no such thing!). What we hoped to illustrate here, then, is that
for such complicated models, likelihood-free Bayesian inference (using EP or
otherwise) may be a viable approach towards statistical inference.

5.5 Discussion

We have seen how Bayesian inference of phylogenomic models from gene tree
distributions can be performed using efficient simulation algorithms, thereby
bypassing the evaluation of the often intractable likelihood function of tree
topologies associated with models of gene family evolution. In particular, we
have explored a new approach based on expectation propagation which makes
use of an exponential family over tree topologies that admits a sparse repre-
sentation, allowing variational inference of species tree topologies under the
MSC in a data-partitioned way. Although more work is needed for improving
the stability of the proposed algorithms, in particular for applications to larger
taxon sets, we believe the EP approach presents an interesting and viable strat-
egy for learning about genome evolution from phylogenomic forests.

Note that, while we focused on the problem of species tree inference, the
method presented above can also be used to infer reconciled gene trees (see
the next chapter for more details). Indeed, the (weighted) sample of gene
tree topologies in each individual site update provides an approximation of
the posterior distribution over reconciled gene trees under the MSC model,
given some empirical tree distribution. We relied on this feature in the present
chapter indirectly when we sought to identify outlier loci which present likely
model violations. We see that the proposed method is really somewhere in
between the twomain classes of commonly used methods outlined above, con-
ducting joint Bayesian inference of species trees and gene trees, not using a
full hierarchical model for the sequence data, but modeling only the variation
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in gene tree topologies instead.

Importantly, relying on simulation, the proposed approach is rather flexible
with regard to models of gene family evolution, which often do not have a
tractable likelihood function for observed gene tree topologies. However, we
have only considered MSC-like models of gene family evolution, which de-
scribe the genealogy of a given sample retrospectively, and hence can effi-
ciently be simulated. In the case of forward-time evolutionary models, such
as birth-death likemodels of gene family evolutionwithin a species tree, we do
not have simple methods for simulating gene trees conditional on the sampled
genes, and we have to resort to less efficient means such as rejection sam-
pling to simulate trees under the model which have non-zero probability to
be compatible with the observed data. This makes the suggested methods un-
likely to be useful for species trees and gene families of even moderate size for
forward-time models. Designing new types of ABC kernels for trees that en-
able ameaningful quantification of the distance between trees of different sizes
could be part of a solution to such issues, although it is certainly not obvious
how this should be done. Nevertheless, despite these issues, likelihood-free
methods like the one developed here should be among the prime candidates to
consider for conducting statistical analyses of genome evolution under com-
plicated models, such as the MLMSC in the sense of Li et al. (2021).

A major source of information which is not taken up in the approaches we
have suggested here are the molecular distances associated with the branches
of the gene trees. The only way by which this source of information presently
enters the analysis is through the side-effect that short distances tend to im-
ply gene tree uncertainty, and hence discordance of inferred gene trees with
species trees. It remains an open question whether, and how, we can mean-
ingfully incorporate distance estimates from phylogenetic CTMC models in
the ‘phylogenomic forest’ point of view. We will take up this question again,
but will not resolve it, in the next chapter, where we take the phylogenomic
forests to the multi-copy gene family setting.
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6 Bayesian gene tree reconciliation for multi-
copy gene families

We continue our explorations in modeling genome evolution from the phy-
logenomic forest point of view introduced in chapter 4 and 5, but return to the
multi-copy setting of chapter 31. In contrast with the previous chapter, our
focus will here be on the problem of gene tree - species tree reconciliation,
or simply gene tree reconciliation for the sake of brevity, where we assume
a known species tree 𝑆 and seek to ‘fit’ the gene trees ‘inside’ 𝑆, assuming
some genome-scale model of gene family evolution.

Gene tree reconciliation for multi-copy families has been a major approach for
inferring homology relationships (e.g. Huerta-Cepas et al. 2007; Van Bel et
al. 2018; Emms and Kelly 2019), for the analysis of genome evolution across
deep time scales (Blomme et al. 2006; Hahn, Han, and Han 2007; Hahn 2007;
De Smet et al. 2013; Li et al. 2016) and for the inference of ancient polyploidy
(Jiao et al. 2011; Li et al. 2015; Marcet-Houben and Gabaldón 2015; McK-
ain et al. 2016; Thomas, Ather, and Hahn 2017; Yang et al. 2018; Z. Li et al.
2018; Zwaenepoel and Van de Peer 2019a; Roelofs et al. 2020; Leebens-Mack
et al. 2019). Most commonly used methods for reconciling gene trees with
species trees do not rely on probabilistic models of gene family evolution nor
statistical methods for inference, and are based on the principle of maximum
parsimony under some scoring scheme or other, more or less ad hoc, methods.
In addition, most methods for gene tree reconciliation assume the gene tree
to be known without error (see also our discussion in the previous chapter), a
likely problematic assumption which may lead to considerable biases in the in-
ferred rates of gene family evolution or number of inferred evolutionary events

1This chapter draws freely from our published work in Zwaenepoel and Van de Peer (2019a).
Themethod developed there was further used by us in Roelofs et al. (2020) and Chen et al. (2022),
as well as by a number of other authors (two examples we know of are Wickell et al. (2021) and
Liu et al. (2021)).
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(e.g. gene duplication, loss and horizontal gene transfer events) (Hahn 2007).
The pervasive combination of disacknowledging uncertainty in inferred gene
trees (or doing so in ad hoc ways) and relying on naive reconciliation algo-
rithms in phylogenomic studies has lead to a literature scattered with claims
and inferences of which the reliability is hard to assess, with a number of con-
troversies ensuing, in particular in the context of phylogenomic inference of
ancient WGDs (e.g. Jiao et al. 2011; Li et al. 2015; Ruprecht et al. 2017;
Ren et al. 2018; Zwaenepoel et al. 2019; Zwaenepoel and Van de Peer 2019a;
Wang et al. 2019; Z. Li et al. 2018; Nakatani and McLysaght 2019; Roelofs
et al. 2020; Leebens-Mack et al. 2019; Huang et al. 2020; Chen et al. 2022).

It seems wise then to take a step back and search for a statistically more ade-
quate approach for gene tree reconciliation. In this chapter we develop meth-
ods for Bayesian gene tree reconciliation for multi-copy gene families using
phylogenetic BDP models. Our approach is based on the amalgamated likeli-
hood approximation due to Szöllősi, Rosikiewicz, et al. (2013), using a two-
step method which makes use of the empirical conditional clade distribution
of Larget (2013), defined in chapter 4. We will see that in this approach, the
branching property is even more vital for efficient statistical inference, and in
terms of the underlying models of gene family evolution we will hence stick to
the phylogenetic birth-death processes of chapter 3. We will again devote spe-
cial attention to the problem of modeling and inference of ancient WGDs in a
phylogenetic context, describing in detail the method proposed in Zwaenepoel
and Van de Peer (2019a). We conclude with a discussion of the pitfalls of the
proposed methods and the challenges that remain.

6.1 Statistical gene tree reconciliation

6.1.1 From gene counts to gene trees

Recall that we have conceived of a genome, or a set of genomes, as a col-
lection of genes partitioned into evolutionarily relevant subsets (the ‘bag of
genes’ model), where the latter we have termed gene families. Genes within
a gene family are assumed to be homologous, or more specifically, they are
assumed to be descendants of an ancestral gene in some suitably chosen an-
cestor (see chapter 1). Moreover, we assume that a gene family contains all
descendants of such an ancestral gene, including gene duplicates. Consider-
ing this collection of gene families as given data, we have, in chapter 2 and 3,
considered evolutionary models that could generate those data, and attempted
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to confront the data with these models to estimate parameters which inform us
about genome evolutionary processes. In the latter step, we have previously,
however, tacitly assumed that we possess no more information than the gene
content of each family. When we label each gene by its respective genome
𝑘 ∈ [1..𝑚], the observed data consisted of nothing more than 𝑛multisets with
elements from [1..𝑚], which we have usually summarized in an 𝑛 × 𝑚 count
matrix recording the multiplicity for each species in each family.

Obviously, such an approach wilfully ignores a tremendous amount of in-
formation that genomic data provides about the evolutionary models we are
considering. Specifically, all stochastic models we considered generate locus
trees or gene trees (see chapter 1), i.e. phylogenetic trees with as leaves the rel-
evant gene family members.2 If we are prepared to assume some model of se-
quence evolution, extant observed gene sequences provide information about
the gene tree (this is of course the fundamental idea of statistical molecular
phylogenetics), and hence, if molecular sequence evolution occurs on simi-
lar time scales as gene family evolution (which appears to be the case, see
e.g. chapter 2), sequence data provides information about gene family evolu-
tion. Of course, the reverse is also true, and considering the evolution of gene
families within a species tree may greatly inform the inference of gene trees
from sequence data (Szöllősi, Rosikiewicz, et al. 2013; Szöllősi et al. 2015).

When modeling gene content alone using phylogenetic BDP models, we have
implicitly marginalized the likelihood over all tree topologies and node ages
that could have generated the observed phylogenetic profile 𝑥. In other words,
for a species tree 𝑆 and parameters of a model of gene family evolution 𝜃,
the likelihood function used in statistical inference from gene counts can be
expressed as

𝑝(𝑥|𝑆, 𝜃) = ∑
𝐺∈𝑥 ∫

𝑝(𝐺, 𝑡|𝑆, 𝜃)𝑑𝑡
Where 𝑥 denotes the set of gene tree topologies with extant leaves compatible
with the profile 𝑥, and 𝑡 the vector of branch lengths of the gene tree. Note
that the algorithms described for inference for phylogenetic BDPs from gene
count data do not in fact perform this marginalization, but instead make use

2Note that virtually all models used in practice generate either a locus tree or a gene tree, as-
suming some sort of constraint on the one which is not explicitly modeled. For instance, the MSC
model considered in the previous chapter generates a gene tree (genealogy), and it is assumed that
the locus tree is identical to the species tree. On the other hand, the phylogenetic BDP models
considered in the present chapter generate locus trees, and it will be assumed that a gene tree is
determined by its associated locus tree. In the latter case, we refer to the locus tree as a gene tree,
following a common abuse of terminology.
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of the transient distributions of the BDP process to marginalize over ancestral
states along the internal nodes of 𝑆.

Taking into account the associated sequence data 𝑦 admits a more detailed
modeling approach if we are prepared to make assumptions about the molec-
ular evolutionary process. The likelihood function for aligned sequence data
𝑦 can be expressed as

𝑝(𝑦|𝜙, 𝜃, 𝑆) = ∑
𝐺∈𝑦 ∫

𝑝(𝑦|𝐺, 𝑡, 𝜙)𝑝(𝐺, 𝑡|𝑆, 𝜃)𝑑𝑡 (6.1)

where 𝜙 represents the (typically vector-valued) parameter for the model of
sequence evolution. Here 𝑝(𝑦|𝐺, 𝑡, 𝜙) is the usual likelihood for phylogenetic
CTMC models, while 𝑝(𝐺, 𝑡|𝑆, 𝜃) is the likelihood of the gene tree under the
model of gene family evolution. Importantly, for sufficiently rich models of
multi-copy gene family evolution, statistical methods based on eq. 6.1 not
only provide a means for inference of 𝑆 and 𝜃, but also allow the statistical
inference of gene tree topologies and implied homology relations, and in prin-
ciple allow doing all this jointly (barring computational limitations, of course).
Note that most models of gene family evolution generate time-calibrated gene
trees, so that one cannot bypass the specification of a molecular clock model
in order to compute 𝑝(𝑦|𝐺, 𝑡, 𝜙) (i.e. 𝜙 includes substitution rate parameters).
Likelihood-based methods (Bayesian or otherwise) for inference of phyloge-
netic BDPs and related models of gene family evolution explicitly based on
eq. 6.1 have been scarce, but Prime-DLRS and related methods (Åkerborg et
al. 2009; Sjöstrand et al. 2012; Mahmudi et al. 2013; Ullah et al. 2015)
provide a notable example.

In the remainder of this chapter we will deal with this problem from the phy-
logenomic forest point of view, that is, we will not deal with the model of
sequence evolution explicitly, but will assume that we have a probability dis-
tribution over gene trees at our disposal which adequately describes the prob-
ability of a gene tree given the observed sequence data under some phyloge-
netic CTMC model of sequence evolution. Roughly, the idea, due to Szöllősi,
Rosikiewicz, et al. (2013), is to replace eq. 6.1 by

𝑝(𝑦|𝜃, 𝑆) = ∑
𝐺∈𝑦

𝑝(𝑦|𝐺)𝑝(𝐺|𝜃, 𝑆) ≈ ∑
𝐺∈𝑦

𝜉𝑦(𝐺)𝑝(𝐺|𝜃, 𝑆) (6.2)

Where 𝜉𝑦(𝐺) is an estimate of the posterior probability of𝐺 given the sequence
data 𝑦 under a phylogenetic CTMC model of sequence evolution. In this set-
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Figure 6.1: Example of reconciled gene trees. We show six different reconciliations for
a single gene tree topology (sampled iid from a phylogenetic BDPmodel usingmethods
developed below). The species tree is shown with broad gray branches, whereas the
gene tree is displayed in black within the species tree. In this particular reconciliation,
each node of the gene tree is either associated with a duplication event (orange), a
speciation event (black) or a loss event. Note that four out of six sampled reconciled
trees are different.

ting however, similar challenges as in the MSC problem appear, namely, com-
puting 𝑝(𝐺|𝑆, 𝜃) efficiently so that the sum in eq. 6.2 can be completed in
reasonable computational time. Computing 𝑝(𝐺|𝑆, 𝜃), the probability of ob-
serving a particular gene tree topology for a given species tree and model of
gene family evolution, constitutes the core problem of probabilistic gene tree
reconciliation. Before delving into this, we will need to be more precise about
what we understand by a reconciled gene tree.

6.1.2 Reconciled gene trees

6.1.2.1 Informal description

The concept of gene tree - species tree reconciliation, together with parsimony-
based strategies for inferring reconciled gene trees given a known species tree,
stems from Goodman et al. (1979), and was elaborated on considerably in
Page (1994) and Page and Charleston (1997), before becoming a core con-
cept in comparative genomics in the post-genomic era. The title of the pa-
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per by Goodman et al., “Fitting the Gene Lineage into its Species Lineage, a
Parsimony Strategy Illustrated by Cladograms Constructed from Globin Se-
quences”, is as good as any informal description of the goal of gene tree rec-
onciliation. As individual gene trees differ from the species tree in general
(and necessarily so for multi-copy gene families), the challenge to explain
the evolutionary history of the gene family, as represented by the gene tree,
with respect to the evolutionary history of the associated populations, as rep-
resented by the species tree, comes up naturally. We can think of providing
such an explanation as ‘fitting’ the gene tree within the species tree in some
way (see fig. 6.1 for an illustration). From the perspective of the three-tree
model introduced in chapter 1 (Rasmussen and Kellis 2012), this essentially
boils down to inferring the locus tree conditional on the gene tree and species
tree.

Of course, to do this in a systematic fashion, we need some model of gene
family evolution which postulates a set of possible locus-level evolutionary
events in terms of which we are allowed to explain the gene tree, such as for
instance gene duplication, gene loss, horizontal gene transfer, de novo gene
origin and deep coalescence3. Given such a model, we then need an approach
to infer a plausible evolutionary history for the gene family in terms of these
evolutionary events in a way compatible with both the gene tree and species
tree. If our model is probabilistic in nature, such as a phylogenetic BDPmodel,
we can use likelihood-based statistical inference methods to do so, if not, the
typical approach is to devise some ad hoc scoring scheme and use maximum
parsimony with (possibly heuristic) optimization algorithms (as in e.g. the pi-
oneering work of Goodman et al. (1979)). Despite considerable advances
in statistical phylogenetics, the latter approach is still far more common in
the context of gene tree reconciliation. Particularly common is the parsimony
approach which seeks to minimize the number of gene duplication and loss
events required to fit the gene tree inside the species tree. As is clear from
our example in fig. 6.1, where we show reconciliations sampled under a prob-
abilistic phylogenetic BDP model, there are many possible reconciliations for
a given gene tree, of which the most parsimonious one is but one example, a
fact that is not always well-appreciated.

3In the previous chapter, where we did not study multi-copy gene families, the only event
available to explain the (possibly discordant) relation between the gene tree and species tree was
deep coalescence. We admit that it is slightly awkward to refer to deep coalescence as an evo-
lutionary event distinct from speciation, but we trust that the reader is prepared to grant us this
common abuse of terminology.
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6.1.2.2 Definitions and notation

It will be helpful to make some definitions and introduce some suitable no-
tation, some of which repeated from chapter 4 and 5. Note that as before a
gene family will always correspond to an orthogroup. Let 𝐺(𝑉 ,𝐸) be the
graph representation of a tree topology  , with 𝑉 = 𝑉 ( ) the set of nodes
(or vertices) and 𝐸 = 𝐸( ) the set of branches (or edges) of the tree. We
shall again denote the set of leaves of a tree  by ( ). In a rooted tree each
branch ⟨𝑢, 𝑣⟩ ∈ 𝐸( ) can be identified with its target node 𝑣. For a rooted
tree  , we denote by 𝑣 the subtree of  rooted in the node 𝑣. A tree may
or may not be associated with branch lengths which formally correspond to a
mapping 𝑙∶ 𝐸( ) → ℝ+. We write 𝑙𝑣 for the length of the branch ⟨𝑢, 𝑣⟩ lead-
ing to node 𝑣 of a rooted tree. We recall that a timetree is a phylogenetic tree
where branch lengths are interpreted to measure time intervals on some suit-
able scale. As before, by a species tree 𝑆, we will usually refer to a timetree
where the leaves represent extant species and internal nodes speciation events.
We define a gene tree in the same way as we did in the previous chapter, that
is:

Definition. A gene tree (𝐺, 𝜎) is a binary rooted tree associated with some
species tree 𝑆 together with a gene-to-species map 𝜎∶ (𝐺) → (𝑆), associ-
ating with each gene 𝑢 the species 𝜎(𝑢) from which it derives.

For our purposes in the present chapter, we employ the following formal defi-
nition of a gene tree reconciliation:

Definition. A reconciled gene tree  is a tuple (𝐺, 𝜌) where 𝐺 is a gene tree
associatedwith species tree𝑆 and 𝜌∶𝑉 (𝐺) → 𝐸(𝑆)×ℝ+, is the reconciliation
map, where ∀𝑢 ∈ (𝐺)∶ 𝜌(𝑢) = (𝜎(𝑢), 0).

In words, 𝜌 maps a gene tree node to a branch of the species tree and a time
point along that branch, where we associate time point 0 with the target node
of the branch. Note that we could alternatively use a definition where we
assign to each time point along 𝑆 a unique number in [0, 𝑇 ] where 𝑇 is the
total tree length, and have a reconciliation map 𝜌∶ 𝑉 (𝐺) → [0, 𝑇 ], however,
for our purposes it will be more convenient to take up the species tree branches
explicitly in 𝜌.

With the above definition of a reconciliation, we have that, when 𝜌(𝑢) = (𝑒, 0)
for a gene tree node 𝑢, the node is mapped to the species tree node 𝑒 and repre-
sents divergence through speciation (fig. 6.1). When 𝜌(𝑢) = (𝑒, 𝑡) with 𝑡 ≠ 0,
𝑢 is mapped to a branch of 𝑆, in which case the gene tree node reflects a dupli-
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cation event. The gene tree as we have defined it is essentially an incomplete
reconciliation, where 𝜌 is only defined for the leaf nodes of the tree. Note
that there are more general ways to formally define a reconciliation, but all of
them of course consider some mapping from gene tree to species tree nodes
or vice versa. In particular, when the model admits more evolutionary events
than duplication and loss (e.g. horizontal gene transfer or deep coalescence),
the above definition will not suffice. We will not, however, deal with such
models in the present chapter, so that the definition formulated here, similar
to the definition in Arvestad, Lagergren, and Sennblad (2009), will suffice for
our needs.

6.2 Gene tree reconciliation for the phylogenetic linear BDP

At this point, it may be unclear what purpose the gene tree reconciliation has
when our immediate goal is the calculation of 𝑝(𝐺|𝜃, 𝑆), i.e. the probability
of observing a gene tree topology given a phylogenetic BDP with parameters
𝜃. However, note that for a gene tree topology 𝐺, we can write

𝑝(𝐺|𝜃, 𝑆) = ∑
𝜌∈𝑆𝑉 (𝐺)

𝑝(𝐺, 𝜌|𝜃, 𝑆) (6.3)

where 𝑆𝑉 (𝐺) is a slight abuse of notation for denoting the set of all possible
reconciliation maps. For a phylogenetic linear BDP, 𝑝(𝐺, 𝜌|𝜃, 𝑆) can be com-
puted relatively easily. In words, then, eq. 6.3 suggests that to compute the
likelihood of a gene tree topology 𝐺 under some model of gene family evolu-
tion, we can marginalize over all possible ways to fit𝐺 in the species tree. We
now proceed by describing an algorithm to perform this marginalization for
an observed gene tree 𝐺 under the linear phylogenetic BDP model. We shall
develop the theory for rooted gene trees, but will relax this assumption later
when we deal with gene tree uncertainty4.

4Indeed, an unrooted tree can be thought of as a probability distribution over rooted trees,
where we assume each possible rooting equally probable a priori. An algorithm for dealing with
unrooted gene trees will hence be a simple corollary of our treatment of reconciliation with gene
tree uncertainty below.
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6.2.1 The gene tree likelihood

6.2.1.1 Differential equations for the phylogenetic BDP

For a linear BDP model of gene family evolution by gene duplication and
loss, with duplication rate 𝜆 and loss rate 𝜇, we can compute 𝑝(𝐺|𝑆, 𝜆, 𝜇) by
solving a system of ODEs recursively. To see this, let 𝑝𝑒(𝑢, 𝑡) with 𝑡 ∈ [0, 𝑙𝑒]
be the probability that the lineage (gene tree branch) leading to gene tree node
𝑢 ∈ 𝑉 (𝐺) passes through branch 𝑒 at a distance 𝑡 from the endpoint of 𝑒, and
note that

𝑝𝑒(𝑢, 𝑡 + Δ𝑡) = (1 − 𝜇Δ𝑡)×[
(1 − 𝜆Δ𝑡)𝑝𝑒(𝑢, 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

propagation

+ 𝜆Δ𝑡𝑝𝑒(𝑣, 𝑡)𝑝𝑒(𝑤, 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
represented duplication

+2𝜆Δ𝑡𝑝𝑒(𝑢, 𝑡)𝜖𝑒(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
duplication and loss

]
+ 𝑜(Δ𝑡)

=
(
1 − (𝜇 + 𝜆)Δ𝑡

)
𝑝𝑒(𝑢, 𝑡) + 𝜆Δ𝑡

(
𝑝𝑒(𝑣, 𝑡)𝑝𝑒(𝑤, 𝑡) + 2𝑝𝑒(𝑢, 𝑡)𝜖𝑒(𝑡)

)
+ 𝑜(Δ𝑡)

(6.4)

Where 𝑣 and 𝑤 are the daughter nodes of 𝑢, and 𝜖𝑒(𝑡) is the probability that a
lineage present at time 𝑡 in branch 𝑒 ∈ 𝐸(𝑆) leaves no observed descendants
(the extinction probability). If 𝑢 is a leaf node, we assume the terms involv-
ing 𝑣 and 𝑤 to be zero. The extinction probabilities can again be computed
straightforwardly using the probability generating function for the linear BDP
and a postorder traversal of 𝑆 (as in chapter 3). The rationale for the different
terms in eq. 6.4 is illustrated in fig. 6.2.

We can of course derive an ODE from the above, which will define the 𝑝𝑒(𝑢, 𝑡)
for a given species tree branch 𝑒 recursively. Subtracting 𝑝𝑒(𝑢, 𝑡) from both
sides of eq. 6.4, dividing by Δ𝑡, and taking the limit as the latter goes to 0, we
obtain

𝑑𝑝𝑒(𝑢, 𝑡)
𝑑𝑡

= −(𝜆 + 𝜇)𝑝𝑒(𝑢, 𝑡) + 𝜆
(
𝑝𝑒(𝑣, 𝑡)𝑝𝑒(𝑤, 𝑡) + 2𝑝𝑒(𝑢, 𝑡)𝜖𝑒(𝑡)

)
(6.5)

Unsurprisingly, these ODEs are very similar to those used in macroevolution-
ary studies, where one seeks to fit birth-death process models to dated species
trees (e.g. Nee et al. 1994; Maddison, Midford, andOtto 2007; Rabosky 2014).
The system of ODEs in eq. 6.5 can be solved for the complete species tree by
specifying a suitable set of boundary conditions. Specifically, we have that
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for nodes 𝑒 ∈ (𝑆)
𝑝𝑒(𝑢, 0) =

{
1 if 𝑢 ∈ (𝐺) ∧ 𝜎(𝑢) = 𝑒
0 else

and for internal nodes 𝑒 of 𝑆

𝑝𝑒(𝑢, 0) = 𝑝𝑓 (𝑣, 𝑙𝑓 )𝑝𝑔(𝑤, 𝑙𝑔) + 𝑝𝑓 (𝑤, 𝑙𝑓 )𝑝𝑔(𝑣, 𝑙𝑔)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

represented speciation

+ 𝑝𝑓 (𝑢, 𝑙𝑓 )𝜖𝑔 + 𝑝𝑔(𝑢, 𝑙𝑔)𝜖𝑓
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

speciation and loss
(6.6)

Where in the latter equation we again assume that the terms involving 𝑣 and𝑤
are 0 when 𝑢 ∈ (𝐺). Here, 𝜖𝑒 = 𝜖𝑒(𝑙𝑒) is the probability that a single lineage
present at the start of species tree branch 𝑒 has no observed descendants (the
extinction probability). The 𝜖𝑒 values can be computed recursively using the
probability generating function of the process in a postorder traversal of the
species tree (see chapter 3). Using this recursive set of boundary conditions,
one can solve the system of ODEs numerically along the species tree using
dynamic programming over the gene tree nodes in a post-order traversal of 𝑆.
In this way we can compute for each gene tree node 𝑢 ∈ 𝑉 (𝐺) the probability
that the lineage leading to 𝑢 ‘passes through’ branch 𝑒 of the species tree at
time 𝑡.

6.2.1.2 Recursions for the root

Special care is needed for the probabilities at the root node 𝑜 of 𝑆. Assuming
a single gene at the root, we see that 𝑝(𝐺|𝑆, 𝜆, 𝜇) = 𝑝𝑜(𝑥, 0), where 𝑥 is the
root node of the gene tree. Of course, we are usually in no position to make
such a stringent assumption (chapter 1). A straightforward way to account for
this is to add a ‘virtual branch’ of a certain length 𝑙𝑜 leading to the root of 𝑆
and extend the phylogenetic BDP model accordingly (as in e.g. Szöllősi et al.
(2012); Szöllősi, Rosikiewicz, et al. (2013)). Assuming a single lineage at
the beginning of the virtual root branch, the intra-branch system of ODEs can
be solved again to obtain 𝑝𝑜(𝑥, 𝑙𝑜) as the likelihood of the gene tree topology
under the phylogenetic BDP model. Given that the transient distribution of
a linear BDP conditioned on non-extinction is a geometric distribution, such
an approach is equivalent to assuming a geometric prior on the number of
lineages at the root. Choosing the length of the virtual branch (or the duplica-
tion and loss rate of the associated BDP) is however a rather awkward way of
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Figure 6.2: Illustration of the rationale behind the recursive algorithm for computing
the likelihood of a reconciled tree under a linear phylogenetic BDP model. The dark
gray rectangles represent the species tree branches, with branch labels shown in the
associated gray circles. The reconciled tree, with duplication nodes in orange and
speciation nodes in green, is drawn inside the species tree. Nodes with a black border
represent nodes in the observed (unreconciled) gene tree 𝐺. We show an example
for each of the evolutionary events that can occur in a short time slice Δ𝑡 with their
associated probabilities under the phylogenetic BDP model.

specifying a prior distribution for the number of lineages at the root.

It would be desirable to be able to specify the prior on the number of genes
at the root in a more flexible way. Let 𝜖𝑜 denote the probability that a single
gene at 𝑜 does not leave observed descendants at the leaves of 𝑆, and let 𝑌𝑜 be
the number of lineages at 𝑜 which do leave observed descendants, assuming
a geometric prior on the number of genes at the root, we already noted in
chapter 3 that for a geometric prior with parameter 𝜂 we have

𝑓 (𝑘) = ℙ{𝑌𝑜 = 𝑘} = (1 − 𝜖𝑜)𝑘
𝜂(1 − 𝜂)𝑘−1

(1 − (1 − 𝜂)𝜖𝑜)𝑘+1

Note that this probability can be expressed recursively using

𝑓 (1) =
𝜂(1 − 𝜖𝑜)

�̃�2

𝑓 (𝑘) =
1 − 𝜂
�̃�

𝑓 (𝑠 − 1)
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and where �̃� = (1 − (1 − 𝜂)𝜖𝑜). Note furthermore that

𝑓 (𝑖 + 𝑗) =
(1 − 𝜂)�̃�

𝜂
𝑓 (𝑖)𝑓 (𝑗)

Using this bit of algebra, we can devise a recursion for computing the prob-
ability 𝑝𝑜(𝑢) of the gene tree rooted in node 𝑢 under the phylogenetic BDP
model with a geometric prior on the ancestral gene family size. Specifically,
let 𝑓 and 𝑔 be the child nodes of the root 𝑜 in 𝑆, for internal gene tree node 𝑢
with child nodes 𝑣 and 𝑤

𝑝𝑜(𝑢) =
(1 − 𝜂)�̃�

𝜂
𝑝𝑜(𝑣)𝑝𝑜(𝑤)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
duplication before the root

+
𝜂(1 − 𝜖𝑜)

�̃�2
(
𝑝𝑓 (𝑣, 𝑙𝑓 )𝑝𝑔(𝑤, 𝑙𝑔) + 𝑝𝑓 (𝑤, 𝑙𝑓 )𝑝𝑔(𝑣, 𝑙𝑔)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

root speciation

+ 𝑝𝑓 (𝑢, 𝑙𝑓 )𝜖𝑔(𝑙𝑔) + 𝑝𝑔(𝑢, 𝑙𝑔)𝜖𝑓 (𝑙𝑓 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

root speciation and loss

)

and similarly for a leaf node 𝑢 of 𝐺

𝑝𝑜(𝑢) =
𝜂(1 − 𝜖𝑜)

�̃�2
(
𝑝𝑓 (𝑢, 𝑙𝑓 )𝜖𝑔(𝑙𝑔) + 𝑝𝑔(𝑢, 𝑙𝑔)𝜖𝑓 (𝑙𝑓 )

)
Given the 𝑝𝑒(𝑢, 𝑡), which we obtain by solving the system eq. 6.5 along 𝑆, we
can hence compute the 𝑝𝑜(𝑢) using a postorder traversal over𝐺. The marginal
likelihood of the gene tree topology rooted in node 𝑢 under the assumed phy-
logenetic BDP with geometric prior on the root family size is then given by
𝑝𝑜(𝑢).

6.2.1.3 Whole-genome duplications

Unsurprisingly, adapting the above recursions to the DLWGD model of Ra-
bier, Ta, and Ané (2014) (see chapter 3) is straightforward. As in our previous
treatment of the phylogenetic DLWGD model, we again introduce an addi-
tional node in the species tree to mark a WGD event. Given the pgf for the
transition across theWGD node, 𝑓 (𝑠) = (1−𝑞)𝑠+𝑞𝑠2, extinction probabilities
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Figure 6.3: Illustration for the reconciliation likelihood recursion at a WGD node un-
der the DLWGD model of Rabier, Ta, and Ané (2014). The species tree branch is
shown in gray, 𝑒 is the WGD node, and 𝑓 is its daughter node, both marked by vertical
dashed lines. The 𝑢, 𝑣 and 𝑤 labels mark gene tree nodes. Each of the three scenarios
corresponds to one of the terms in eq. 6.7.

are still straightforwardly calculated in a single postorder traversal of 𝑆. If 𝑒
is a WGD node and 𝑓 is its single daughter node, we will have for each gene
tree node 𝑢 with children 𝑣 and 𝑤

𝑝𝑒(𝑢, 0) = 𝑞𝑝𝑓 (𝑣, 𝑙𝑓 )𝑝𝑓 (𝑤, 𝑙𝑓 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

represented retention

+ (1 − 𝑞)𝑝𝑓 (𝑢, 𝑙𝑓 )
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

non-retention

+2𝑞𝜖𝑓𝑝𝑓 (𝑢, 𝑙𝑓 )
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
retention and loss

(6.7)

The evolutionary events corresponding to the three terms in this expression
are illustrated in fig. 6.3. Again we use the same expression for a leaf node 𝑢,
assuming in that case the terms involving 𝑣 and𝑤 to equal zero. Note that deal-
ing with higher multiplication levels in the case of gene trees would require
a more detailed model of the polyploidization history. Indeed, a simplistic
model which assumes that a WGM induces a multifurcation in the gene tree
will not work, since observed gene trees will, usually, be strictly bifurcating.
Furthermore, as we have noted before in chapter 3, such amodel is biologically
awkward anyway. Also note that, as before, this is in the first place a model
for autotetraploidy, but can serve as a reasonable model for allopolyploidy as
well. However, in the latter case, we necessarily assume that the divergence
between the involved subgenomes postdates the closest speciation event above
the WGD node in 𝑆. In addition, we assume that the time interval between
the divergence of the subgenomes and their merger through allopolyploidy is
short, so that the probability of a duplication or loss event occurring in this
interval is negligible.
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Figure 6.4: Illustration of the discretized calculation of the reconciliation likelihood
for linear BDP models. In the discretized model, we assume that, for each branch 𝑒 of
the species tree (here depicted as a gray rectangle), at most one represented duplication
event occurs within a time slice of length Δ𝑡. Under this assumption, we can calculate
the probability of observing the lineage leading to gene tree node 𝑢 for the boundaries
of each time slice recursively from the tipward slice to the rootward slice. The left
diagram illustrates the propagation of a single lineage through a time slice, despite du-
plication events occurring within the slice. The right diagram shows a similar scenario
for a represented duplication. See the main text for further details.

6.2.1.4 Discretization

Numerically solving the recursive set of ODEs with high accuracy could be-
come computationally prohibitive for phylogenomic data sets. We can how-
ever use theoretical results for the linear BDP model to approximate the like-
lihood using a coarse discretization without sacrificing too much numerical
accuracy.

Consider a species tree branch 𝑒 of length 𝑙𝑒, and divide the branch in 𝑛𝑒 time
slices of length Δ𝑡 (fig. 6.4). We will take another viewpoint on the random
process associated with the gene tree reconciliation, already implicit in our
derivation of the ODEs for the marginal likelihood above. Let 𝑋𝑒(𝑢, 𝑡) be the
binary random variable5 which takes the value one when the lineage leading to
gene tree node 𝑢 passes through branch 𝑒 of𝑆 at time 𝑡, and zero otherwise. For
a discretized species tree branch with time slices of length Δ𝑡, the probability

5Given that the tuple (𝑒, 𝑡) marks the time point along the phylogeny 𝑆, it may seem more
natural to adopt a notation like𝑋𝑢(𝑒, 𝑡). We however retain the suffix referring to the species tree
branch, to stress the independence (and compositionality) of the evolutionary processes in distinct
species tree branches. Perhaps𝑋𝑒,𝑢(𝑡)would be evenmore natural, but also typographically uglier.
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of propagating a single gene lineage through the slice (see fig. 6.4, on the left)
is

𝜙𝑒(𝑡, 𝑡 + Δ𝑡) = ℙ{𝑋𝑒(𝑢, 𝑡 + Δ𝑡) = 1|𝑋𝑒(𝑢, 𝑡) = 1}

=
∞∑
𝑘=0

(
𝑘 + 1
𝑘

)
𝑝1,𝑘+1(Δ𝑡)𝜖𝑒(𝑡)𝑘

=
(1 − 𝛼(Δ𝑡))(1 − 𝛽(Δ𝑡))

(1 − 𝛽(Δ𝑡)𝜖𝑒(𝑡))2

where 𝛼 and 𝛽 were defined in chapter 2. Similarly6, in the case of a duplica-
tion, for child nodes 𝑣 and 𝑤 of 𝑢, we have

𝜓𝑒(𝑡, 𝑡 + Δ𝑡) = ℙ{𝑋𝑒(𝑢, 𝑡 + Δ𝑡) = 1|𝑋𝑒(𝑣, 𝑡) = 1, 𝑋𝑒(𝑤, 𝑡) = 1}

=
∞∑
𝑘=0

(
𝑘 + 2
𝑘

)
𝑝1,𝑘+2(Δ𝑡)𝜖𝑒(𝑡)𝑘

= 𝜙𝑒(𝑡, 𝑡 + Δ𝑡)
𝛽(Δ𝑡)

(1 − 𝛽(Δ𝑡)𝜖𝑒(𝑡))

The latter scenario is also illustrated in fig. 6.4 (right hand side). We note
that these results can also be derived using a recursive argument, as we did in
chapter 3.

Using these results, we can approximate the likelihood by replacing the within
branch ODE of eq. 6.5 by the following recursion

𝑝𝑒(𝑢, 𝑡 + Δ𝑡) = 𝜙(𝑡, 𝑡 + Δ𝑡)𝑝𝑒(𝑢, 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

propagation

+𝜓(𝑡, 𝑡 + Δ𝑡)𝑝𝑒(𝑣, 𝑡)𝑝𝑒(𝑤, 𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

represented duplication

With the inter-branch recursions given by eq. 6.6 as before. It is important to
stress that this does not merely provide a coarse discrete approximation to the
ODEs of the continuous-time linear BDP model, but rather an exact calcula-
tion for an approximatemodel, in which we assume that at most a single repre-
sented duplication occurs within a time slice of length Δ𝑡 (fig. 6.4). In fig. 6.5
we compare the discretized model likelihood against the ODE solution. As ex-

6As an aside, we note that while these kind of manipulations of sums may be utterly trivial
for mathematicians, computer scientists and physicists, they can appear somewhat magical to the
uninitiated (at least that used to be the case for your humble author). This is a great opportunity,
however, to mention the wonderful book by Graham et al. (1989), where one can learn the tricks
of the trade.
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Figure 6.5: Comparison of the discretized model likelihood to the solution of the ODE
system for the phylogenetic linear BDP marginal likelihood for a simulated gene tree.
(A) Simulated gene tree for a phylogenetic linear BDP model. (B) Reconstructed gene
tree (with extinct lineages pruned). (C) Example reconciliation for the reconstructed
gene tree, sampled from the linear phylogenetic BDP model. (D) In black, the dis-
cretized marginal likelihood 𝓁 for decreasing time slice length Δ𝑡 is shown, whereas
the likelihood obtained by solving the ODE system of sec. 6.2.1.1 is indicated by the
orange line.

pected, the ODE solution provides an upper bound for the discretized model,
since the latter assumes the exact same probabilistic model, but restricts the
number of admissible scenarios for fitting the gene tree in the species tree to
those with at most a single represented duplication in one time slice.

6.2.1.5 Conditioning on the sampling process

As was already discussed in chapter 3, it is important to correct the marginal
likelihood in accordance with the sampling process when the latter is biased.
We shall for instance, as in the mentioned chapter, usually deal with families
which have at least one observed descendant in both clades stemming from
the root of the species tree. The necessary conditioning factor can however
be computed exactly as before, and we refer the reader to chapter 3 for the
relevant details.

6.2.2 Sampling reconciled trees

The above theory allows the calculation of the marginal likelihood of a gene
tree topology 𝐺 given a species tree and a phylogenetic BDP model of gene
family evolution, and hence likelihood-based inference for the parameters of
the phylogenetic BDP (and 𝑆, if desired) when we assume 𝐺 to be observed.
However, at this point it is not yet clear how to conduct inference of reconciled
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gene trees using the framework we are developing. In the discretized model,
where the algorithm to compute the gene tree likelihood has essentially been
cast in a common dynamic programming form, we can easily sample reconcili-
ations for a given gene tree topology from the probability distribution induced
by a phylogenetic BDP model by means of a stochastic backtracking algo-
rithm. That is, conditional on a phylogenetic BDP model with species tree
𝑆 and parameters 𝜃, we can sample from 𝑝(𝜌|𝐺, 𝜃, 𝑆). Using such samples,
we can estimate quantities of interest like the expected number of represented
duplications on a branch of the species tree, the probability that two genes
are paralogs rather than orthologs with respect to some ancestor, the probabil-
ity that a gene pair of interest derives from a duplication event in a particular
branch of the species tree, etc.

Assume that we have computed the 𝑝𝑒(𝑢, 𝑡𝑖) for each 𝑢 ∈ 𝑉 (𝐺), 𝑒 ∈ 𝐸(𝑆)
and 𝑖 ∈ [1..𝑛𝑒]. The stochastic backtracking algorithm will grow a reconciled
tree from the root to the tips in a preorder traversal of 𝑆. Let 𝑌 = (𝑌𝐺, 𝑌𝑆 , 𝑌𝑡)
denote the state of the backtracking algorithm. First, the part of the gene tree
reconciled within the root of 𝑆 is sampled in accordance with the geometric
model outlined above. Given that gene tree node 𝑢 is reconciled to the root
node 𝑜 of 𝑆, i.e. the state of the backtrace is 𝑌 = (𝑢, 𝑜, 0), there are three
classes of admissible events (duplication before the root, represented specia-
tion at the root and speciation followed by loss at the root), which are each
sampled with a certain probability, leading to an update of the state 𝑌 accord-
ing to the following diagram

(𝑢, 𝑜, 0)

(𝑣, 𝑜, 0)
(𝑤, 𝑜, 0)

(𝑣, 𝑓 , 𝑙𝑓 )
(𝑤, 𝑔, 𝑙𝑔)

(𝑤, 𝑓 , 𝑙𝑓 )
(𝑣, 𝑔, 𝑙𝑔)

(𝑢, 𝑓 , 𝑙𝑓 )

(𝑢, 𝑔, 𝑙𝑔)

(1−𝜂)�̃�
𝜂

𝑝𝑜(𝑣)𝑝𝑜(𝑤)

𝜂(1−𝜖𝑜)
�̃�2

𝑝𝑓 (𝑣, 𝑙𝑓 )𝑝𝑔(𝑤, 𝑙𝑔)

𝜂(1−𝜖𝑜)
�̃�2

𝑝𝑓 (𝑤, 𝑙𝑓 )𝑝𝑔(𝑣, 𝑙𝑔)

𝜂(1−𝜖𝑜)
�̃�2 𝑝𝑓 (𝑢, 𝑙𝑓 )𝜖𝑔

𝜂(1−𝜖𝑜)
�̃�2 𝑝𝑔(𝑢, 𝑙𝑔)𝜖𝑓

Where the expressions on top of the arrows mark the (unnormalized) probabil-
ity of the associated transition. Here, the first three cases imply a bifurcation
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in the gene tree, while the last two imply an unobserved speciation node in the
gene tree. The backtracking algorithm is then recursively applied to the new
state(s).

When 𝑌𝑡 ≠ 0, the next state, involving either duplication or propagation of a
single lineage, is sampled according to the following diagram

(𝑢, 𝑒, 𝑡)

(𝑣, 𝑒, 𝑡 − Δ𝑡)
(𝑤, 𝑒, 𝑡 − Δ𝑡)

(𝑢, 𝑒, 𝑡 − Δ𝑡)

𝜓(𝑡 −
Δ𝑡, 𝑡)𝑝𝑒

(𝑣, 𝑡 −
Δ𝑡)𝑝𝑒(

𝑤, 𝑡 −
Δ𝑡)

𝜙(𝑡 − Δ𝑡, 𝑡)𝑝𝑒 (𝑢, 𝑡 − Δ𝑡)

At speciation (internal) nodes in 𝑆, i.e. when 𝑌𝑡 = 0, 𝑌𝑆 ≠ 𝑜 and 𝑌𝑆 ∉ (𝑆),
a represented speciation or speciation with subsequent loss occurs, which
amounts to sampling one of the following transitions

(𝑢, 𝑒, 0)

(𝑣, 𝑓 , 𝑙𝑓 )
(𝑤, 𝑔, 𝑙𝑔)

(𝑤, 𝑓 , 𝑙𝑓 )
(𝑓, 𝑔, 𝑙𝑔)

(𝑢, 𝑓 , 𝑙𝑓 )

(𝑢, 𝑔, 𝑙𝑔)

𝑝𝑓(𝑣
, 𝑙𝑓)

𝑝 𝑔(𝑤
, 𝑙 𝑔)

𝑝𝑓 (𝑤, 𝑙𝑓 )𝑝𝑔(𝑤
, 𝑙𝑔)

𝑝𝑓 (𝑢, 𝑙𝑓 )𝜖𝑔
𝑝𝑔 (𝑢, 𝑙𝑔 )𝜖𝑓

The recursion terminates at leaf nodes of the species tree. Note that under
the assumption that there is at least one observed descendant in each clade
stemming from the root, the gene tree root 𝑥 is reconciled with probability
1 to the root node 𝑜 of the species tree, i.e. ℙ{𝑋𝑜(𝑥, 0) = 1} = 1, so that
we can initiate the recursive sampling algorithm from the state (𝑥, 𝑜, 0). The
reconciled gene trees shown in fig. 6.1 were sampled using this algorithm.
Clearly, the backtracking algorithm is readily extended to the DLWGDmodel,
or any other model with similar structure.
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6.2.3 Taking into account gene tree uncertainty

In the previous section we outlined an approach to compute 𝑝(𝐺|𝑆, 𝜃), the
probability of observing a gene tree topology 𝐺 given a species tree 𝑆 and a
phylogenetic linear BDP model (with or without WGD events) with parame-
ters 𝜃. This is of course still a far cry from computing 𝑝(𝑦|𝜃, 𝑆) for sequence
data 𝑦 (eq. 6.2). Szöllősi, Rosikiewicz, et al. (2013) however noted how
the framework for computing the marginal reconciliation likelihood outlined
above can be adapted straightforwardly to deal with uncertainty in the gene
tree when the latter can be adequately captured by a conditional clade dis-
tribution (CCD, see chapter 4). That is, they describe an algorithm, called
amalgamated likelihood estimation (ALE), that allows computing

𝑝(𝑦|𝜃, 𝑆) ≈ ∑
𝐺∈𝑦

𝜉𝑦(𝐺)𝑝(𝐺|𝜃, 𝑆)
whenever the gene tree distribution 𝜉𝑦 is a CCD.When this CCD has restricted
support, as in the case of a (typical) empirical CCD (which is used in the paper
by Szöllősi, Rosikiewicz, et al. (2013)), the computational complexity of the
algorithm is only slightly increased with respect to the fixed 𝐺 case, and the
increase is proportional to the degree of gene tree uncertainty.

We present the adaptation of the system of ODEs for the exact reconciliation
likelihood under the phylogenetic BDP (eq. 6.5). The adaptation for the dis-
cretized model is analogous. Let, similar to eq. 6.5, 𝑝𝑒(𝛾, 𝑡) be the probability
that the lineage leading to clade 𝛾 passes through time point 𝑡 along branch
𝑒 of 𝑆, and let, following chapter 4, 𝜃𝛾,𝛿 be the probability of observing the
split (𝛿, 𝛾 − 𝛿) of clade 𝛾 under the CCD. By the conditional independence
property for disjoint subtrees under the CCD model, it is easy to see that

𝑑𝑝𝑒(𝛾, 𝑡)
𝑑𝑡

= −(𝜆 + 𝜇)𝑝𝑒(𝛾, 𝑡) + 2𝜆𝑝𝑒(𝛾, 𝑡)𝜖𝑒(𝑡) + 𝜆
∑
𝛿⊂𝛾

𝜃𝛾,𝛿𝑝𝑒(𝛿, 𝑡)𝑝𝑒(𝛾 − 𝛿, 𝑡)

and that for an internal branch 𝑒 of 𝑆 with daughter branches 𝑓 and 𝑔, we
have, analogous to eq. 6.6,

𝑝𝑒(𝛾, 0) =
∑
𝛿⊂𝛾

𝜃𝛾,𝛿
[
𝑝𝑓 (𝛿, 𝑙𝑓 )𝑝𝑔(𝛾 − 𝛿, 𝑙𝑔) + 𝑝𝑓 (𝛾 − 𝛿, 𝑙𝑓 )𝑝𝑔(𝛿, 𝑙𝑔)

]
+ 𝑝𝑓 (𝛾, 𝑙𝑓 )𝜖𝑔 + 𝑝𝑔(𝛾, 𝑙𝑔)𝜖𝑓

with again, for a tip branch 𝑒 of 𝑆, 𝑝𝑒(𝛾, 0) equal to 1 when 𝛾 is a leaf node of
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𝐺 with 𝜎(𝛾) = 𝑒, and 0 otherwise. In the DLWGD model, we will of course
have an analogous counterpart to eq. 6.7

𝑝𝑒(𝛾, 0) = 𝑞
∑
𝛿⊂𝛾

𝜃𝛾,𝛿𝑝𝑓 (𝛿, 𝑙𝑓 )𝑝𝑓 (𝛾 − 𝛿, 𝑙𝑓 ) + (1 − 𝑞)𝑝𝑓 (𝛾, 𝑙𝑓 ) + 2𝑞𝜖𝑓𝑝𝑓 (𝛾, 𝑙𝑓 )

Szöllősi, Rosikiewicz, et al. (2013) further showed how to extend the recur-
sions for the discretized model to a phylogenetic BDP model with horizontal
gene transfer (their ODT and exODT models; Szöllősi et al. 2012; Szöllősi,
Tannier, et al. 2013). We will not deal with horizontal gene transfer in the
present work however.

Clearly, to sample reconciled trees, we can use a similar backtracking algo-
rithm for the discretized model as before, now not only determining the recon-
ciliationmap 𝜌 through the backtrace, but also resolving the gene tree topology
𝐺. Specifically, conditional on the phylogenetic BDP model, we can sample
approximately from 𝑝(|𝑦, 𝜃, 𝑆), and hence conduct joint inference of gene
trees and their reconciliations under a phylogenetic BDP model for a known
species tree. Recall furthermore that a CCD can represent a distribution over
unrooted tree topologies (chapter 4), so that we can conduct reconciliation of
unrooted trees using this approach. Hence, the ALE approach allows joint in-
ference of the gene tree topology, the location of the root, and the homology
relationships among gene family members under a phylogenetic BDP model
of gene family evolution, based on a sample of tree topologies obtained using
standard tools for phylogenetic inference under CTMC models of sequence
evolution (e.g. MrBayes, Ronquist et al. (2012a)).

6.2.4 ALE with a two-type branching process model

The DP algorithm at the core of the ALE approach can be adapted to deal
with more sophisticated models of gene family evolution. As noted before, the
assumption that the loss rate per gene in a family is independent of the number
of genes in the family is particularly problematic, with, for instance, the per-
gene loss rate in a single-copy gene family typically being lower compared
to the per-gene loss rate in the same family right after a duplication event.
Furthermore, such more sophisticated models may admit more biologically
reasonable modeling of WGDs (chapter 3).

By an analogous argument as for the phylogenetic linear BDP model, it is
easy to see that the following system of differential equations describes the
probability 𝑝𝑒(𝑢, 𝑚, 𝑡) of a gene tree lineage leading to node 𝑢 passing through
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time 𝑡 along branch 𝑒 as a type 𝑚 ∈ {1, 2} gene for the two-type DL model
described in chapter 3:

𝑑𝑝𝑒(𝑢, 1, 𝑡)
𝑑𝑡

= −(𝜆 + 𝜇1)𝑝𝑒(𝑢, 1, 𝑡) + 𝜈𝑝𝑒(𝑢, 2, 𝑡)

+ 𝜆
(
𝑝𝑒(𝑣, 1, 𝑡)𝑝𝑒(𝑤, 2, 𝑡) + 𝑝𝑒(𝑣, 2, 𝑡)𝑝𝑒(𝑤, 1, 𝑡)

+ 𝑝𝑒(𝑢, 1, 𝑡)𝜖𝑒(2, 𝑡) + 𝑝𝑒(𝑢, 2, 𝑡)𝜖𝑒(1, 𝑡)
)

𝑑𝑝𝑒(𝑢, 2, 𝑡)
𝑑𝑡

= −(𝜆 + 𝜇2 + 𝜈)𝑝𝑒(𝑢, 2, 𝑡)

+ 𝜆
(
𝑝𝑒(𝑣, 2, 𝑡)𝑝𝑒(𝑤, 2, 𝑡) + 2𝑝𝑒(𝑢, 2, 𝑡)𝜖𝑒(2, 𝑡)

)
(6.8)

Recall that in chapter 3 we derived the following ODEs for the probability
generating functions of the two-type branching process model

𝑓 ′
10 = 𝜇1 − (𝜆 + 𝜇1)𝑓10 + 𝜆𝑓10𝑓01

𝑓 ′
01 = 𝜇2 + 𝜈𝑓10 − (𝜆 + 𝜈 + 𝜇2)𝑓01 + 𝜆𝑓 2

01 (6.9)

which we can solve to obtain the extinction probabilities 𝜖𝑒(𝑚, 𝑡) for 𝑒 ∈
𝐸(𝑆). The moral is of course that we expect that for any model which satis-
fies the branching property, i.e. where distinct lineages evolve independently,
it should be possible to derive a suitable recursion along these lines. We shall
not consider the two-type model in the context of statistical gene tree recon-
ciliation further here, deferring this to future work.

6.2.5 Implementation

We implemented the ALE algorithm for phylogenetic BDP models (with pos-
sible WGDs) in a Julia (Bezanson et al. 2017) package called Whale7, first
used in Zwaenepoel andVan de Peer (2019a). Again (see chapter 3), we ensure
differentiability by means of forward-mode automatic differentiation8, and im-
plement our methods such that they can be employed within a probabilistic
programming framework, enabling the flexible specification of hierarchical
Bayesian models as well as the usage of sophisticated sampling algorithms

7Whale is not exactly an acronym, but rather a kind of portmanteau of whole-genome dupli-
cation and ALE. It is of course suggestive of a large cetacean, but this has little to do with the
present topic (note however that all vertebrates have ancient polyploid ancestors).

8We note that the version of Whale associated with our study in Zwaenepoel and Van de Peer
(2019a) did not allow for AD, where we instead relied on gradient-free (and hence less efficient)
methods for inference.



220

and optimizers for Bayesian inference and maximum likelihood estimation.
The package is available at https://github.com/arzwa/Whale.jl. In the follow-
ing example we illustrate our implementation using a simulated data set.

Example (simulated data). We use Whale to simulate (reconciled) 1000
gene trees for a five-taxon phylogeny with a single WGD event, where we
assume log-scale duplication and loss rates to vary across branches according
to a Normal distribution with mean log 0.1 and standard deviation of 0.5. We
assume a geometric prior distribution on the number of ancestral lineages with
parameter 𝜂 = 0.7 and a retention probability for the single WGD event of
𝑞 = 0.1. The following snippet of Julia code will conduct the simulation:
# Load required libraries
using Whale, NewickTree, Distributions, Turing

# Set up the model, `W` marks the WGD node
S = nw"(((((A:0.3,B:0.3):0.2)W:0.3,(C:0.6,D:0.6):0.2):0.2,E:1);"
n = length(postwalk(t))-2
λ = rand(Normal(log(0.1), .5), n)
μ = rand(Normal(log(0.1), .5), n)
θ = DLWGD(λ=λ, μ=μ, q=[0.1], η=0.7)
M = WhaleModel(M, S, 0.01)

# Simulate reconciled trees
trees, _ = simulate(M, 1000)

We next conduct Bayesian inference using Whale for this simulated data
set using the Turing.jl probabilistic programming environment, assuming uni-
form priors for 𝜂 and 𝑞, and an uncorrelated relaxed clock prior for the branch
rates, with a Normal  (log 0.2, 1) prior for the the log-scale mean rate and
an Exponential prior for the standard deviation of the branch rates (𝜏). The
following snippet shows the model specification:
# Construct the CCDs from the simulated trees (input data)
y = read_ale(aleobserve(trees))

# Specify the Bayesian hierarchical model
@model model(M, y, n) = begin

η ~ Beta()
q ~ Beta()
r ~ Normal(log(0.2), 1)
τ ~ Exponential()

https://github.com/arzwa/Whale.jl
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Figure 6.6: Bayesian inference usingWhale and Turing.jl for simulated gene trees on
a five-taxon species tree. (A)Marginal posterior mean rate estimates and 95% posterior
density intervals for the duplication (black) and loss (red) rates. (B) Number of distinct
reconciled trees in the sample from the posterior distribution for each gene family. (C)
Trace plot and marginal posterior histogram for the retention rate parameter 𝑞 for the
single WGD in the model.

λ ~ MvNormal(fill(r, n), τ)
μ ~ MvNormal(fill(r, n), τ)
y ~ M((λ=λ, μ=μ, η=η, q=[q]))

end

# Sample from the posterior using the NUTS algorithm
chain = sample(model(M, y, n), NUTS(), 500)

In fig. 6.6 we show the marginal posterior means and estimated 95% poste-
rior density intervals for the duplication and loss rates, where we find that
we nicely recover the simulated rates. The other parameters are also recov-
ered as expected, with 𝑞 = 0.1 (0.07, 0.12), �̂� = 0.69 (0.66, 0.71) and 𝜏 =
0.46 (0.29, 0.73). In addition, we used the backtracking algorithm to sample
reconciled gene trees from the posterior distribution. We note that although
the gene trees are assumed known in this example, there are often many pos-
sible reconciliations for the same fixed (unrooted) gene tree topology. □

6.3 Phylogenomic inference of whole-genome duplications

While the above discussion points to the general relevance of statistical rec-
onciliation for making sense of gene family evolution from genomic data, our
original interest in model-based gene tree reconciliation stems from the prob-
lem of inferring the occurrence of WGD events in the evolutionary history of
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a group of taxa of interest by means of phylogenomic approaches. We have
already alluded to this particular application of gene tree reconciliation and
its problems in the introduction of the present chapter and provide a more
detailed treatment in the present section.

6.3.1 Unveiling ancient WGDs from genomic data

Methods for unveiling ancient WGDs from genomic data can be crudely clas-
sified into three main approaches. In the first approach, we take advantage
of the expectation that a WGD event leaves a distinctive signature in the dis-
tribution of divergence times between duplicated gene pairs. To do so, one
commonly estimates the synonymous distance (𝐾S), or some other putatively
neutral molecular distance, for the whole paranome, and visualizes the result-
ing distribution. In such a𝐾S distribution, ancientWGDswill be visible as dis-
tinctive components against the approximately exponentially distributed back-
ground coming from the SSDL process (see chapter 2). There are a couple of
pitfalls with this approach, discussed in detail in Vanneste, Van de Peer, and
Maere (2013) (see also Tiley, Barker, and Burleigh (2018); Zwaenepoel et al.
(2019)). Most importantly, this approach will fail for very ancient events due
to saturation of the estimated molecular distance. Furthermore, it can be chal-
lenging to locate putative ancient WGD events in a phylogeny based on 𝐾S
distributions due to differences in substitution rates across different lineages
(see for instance Sensalari, Maere, and Lohaus (2021) or Chen et al. (2022)
for a recent appreciation of this issue). Although statistically well-motivated
model-based efforts for inference of WGDs from 𝐾S distributions have not
been considered in much detail, it is clear, at least in principle, how we could
employ models like the DLWGD model of Rabier, Ta, and Ané (2014) or the
model of Maere et al. (2005) for inferential purposes in this regard.

The second approach is based on the expectation that WGD events should
lead to large colinear blocks in the genome(s) of interest. Such colinearity- or
synteny-based information has often been considered the strongest evidence
for ancient WGDs. In particular, the combination of syntenic and information
from molecular divergence estimates has been vital for the discrimination of
WGD-derived and SSD-derived paralogs. A major drawback is, however, that
high-quality genome assemblies are required, and while considerable progress
continues to be made in that regard, these are still nontrivial to obtain, espe-
cially for large plant genomes. Nevertheless, even with high-quality assem-
blies, interpretation of syntenic signal for very ancient putative WGDs is not
always unequivocal. In particular, the temporal (either relative or absolute)
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framing of a WGD event based on syntenic data is complicated and requires
high-quality genomes ofmultiple related lineages. Herewe note that, although
there exists a rich literature in computational biology and combinatorics on
genome rearrangement and ancestral genome reconstruction, statistical mod-
els of genome evolution at this level are barely existent. The usage of structural
information residing in the linear organization of genomes for the inference
of WGDs (and rates of genome rearrangement etc.) remains largely in a pre-
statistical state.

The last set of methods, which constitute our present topic, are united by their
usage of phylogenetic information in individual gene families. We have al-
ready discussed the methods based on gene counts and phylogenetic BDP
models in chapter 3, but these have not been widely used and have limited
power for unveiling ancient WGD events deep in a phylogeny (although this
may in part be due to inadequate models of gene family evolution – see our dis-
cussion in chapter 3). Approaches based on analyzing gene trees of multi-copy
gene families have been far more common in practice (e.g. Jiao et al. 2011;
Li et al. 2015; McKain et al. 2016; Thomas, Ather, and Hahn 2017; Z. Li et
al. 2018; Yang et al. 2018; Leebens-Mack et al. 2019, and too many plant
genome papers to list here). Virtually all of these methods employ a two-step
approach9 where (1) gene tree topologies are inferred from multiple sequence
alignments using ML inference assuming some phylogenetic CTMCmodel of
sequence evolution, and (2) subsequently reconciled with an assumed species
tree topology by means of some form of most parsimonious reconciliation10.

9Of course, we stress once more (see also chapter 1 and chapter 5) that to label these meth-
ods as ‘two-step methods’ glosses over many important details. Most bioinformatics analyses
involve 𝑛-step methods, where 𝑛 is large (however much they are of the ‘joint Bayesian model
for everything’ type). Indeed, to arrive at the input data for these two-step methods we have to
sequence genomes (DNA extraction, purification, modification, sequencing, base-calling, etc.),
assemble them, annotate protein-coding genes, infer orthogroups and align homologous genes.
Thinking too much about the details of all these other steps when trying to conduct inference in
evolutionary biology can however lead to a form of statistical paralysis that is not very useful.

10Usually, the number of duplication and loss events to fit the gene tree in the species tree (DL
score) is minimized by means of least (or lowest, or last) common ancestor (LCA) reconciliation,
as e.g. defined in Zmasek and Eddy (2001); or some algorithm which bears resemblance to LCA
reconciliation. In the latter case, often an ad hoc approach is usedwithout a stated formal principle
(such as minimizing the DL score) but which is implicitly motivated by some vague parsimony
argument. Here is an example from the methods section of a recent paper: “[…] we applied two
basic requirements for the determination of a reliable duplication event: (1) at least one common
species’ genes are present in two child branches; and (2) the bootstrap values of the parental
node and one of the child nodes are both ≥50%. After scoring gene duplications in a large-scale
analysis on gene families, we were able to confidently identify the nodes with concentrated gene
duplications across the phylogeny, which possibly support the WGD events.” (Y. Liu et al. 2022).
Note, in passing, that it is unclear how to conduct this procedure for unrooted trees.
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In these approaches, a larger than expected number of duplication events in-
ferred for a particular branch of the species tree is regarded as indicative for
an ancient WGD. These methods have been applied both to genomic and tran-
scriptomic data sets, and many large-scale phylotranscriptomic studies report
results obtained by these means (Ren et al. 2018; Z. Li et al. 2018; Leebens-
Mack et al. 2019 are notable examples). So far, most of the support for very
ancient WGD events, and in particular their phylogenetic position, has been
obtained using such gene tree reconciliation approaches.

6.3.2 Issues with inference of WGDs from gene trees

Clearly, there are many serious pitfalls with the commonly used two-step ap-
proaches. Firstly, how many gene duplicates would be indicative of WGD?
Without some model of ‘background’ gene family evolution by small-scale
gene duplication and loss, one would have to adopt a threshold value which
would be arbitrary; with such amodel, it is quickly realized that the parsimony-
based duplication count is not the relevant measure to consider. Furthermore,
the number of duplication events inferred for specific branches can be very
sensitive to taxon sampling, and some signal for a putative WGD event on a
particular branch may be absent or weakened when the branch is subdivided
by adding more taxa to the analysis.

These are however not the most serious issues. A more fundamental prob-
lem in the standard two-step methods is the ignorance of gene tree uncertainty
in the reconciliation step. In particular, reconciliation (model-based or oth-
erwise) of incorrect or uncertain ML trees may lead to grossly overestimated
numbers of gene duplication events deep in the tree (Hahn 2007). Not only
can an inferred ML (or MAP) tree fail to be the correct ML tree, but, more
importantly, there may be many trees for which the sequence data provides
near-equal evidence under the assumed model of sequence evolution (Salter
2001). Obviously, if this is the case, relying on the most parsimonious recon-
ciliation of the single ML tree is a perilous strategy to reconstruct the evolu-
tionary history of a gene family. Furthermore, many of the methods used in
practice rely on rooted gene trees, whereas standard phylogenetic tools infer
unrooted trees11. The root location is itself however uncertain, and even when
outgroups are available, rooting trees for multi-copy gene families is often not

11Note however that parsimony criteria can also be adopted for rooting the gene tree, and
that many parsimony-based reconciliation programs (e.g. NOTUNG; Chen, Durand, and Farach-
Colton 2000) can be used to infer the location of the root as part of the reconciliation problem.
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straightforward. We illustrate the problem of ignoring gene tree uncertainty
in two-step approaches in the following example12:

Example (yeast). A random sample of 100 gene families for a twelve-taxon
yeast data set was obtained (see Appendix B). Maximum likelihood (ML)
phylogenies were inferred using IQ-TREE, with 1000 bootstrap replicates (us-
ing IQ-TREE’s ultrafast bootstrap approximation (Hoang et al. 2018)). We
marked the yeast WGD event shared by the clade below the MRCA of Saccha-
romyces cerivisiae (sce) and Tetrapisispora phaffii (tph) along the phylogeny,
and used Whale with a simple constant rates model and flat non-informative
priors for 𝜆, 𝜇 and 𝑞, and setting 𝜂 = 0.98 based on the average non-extinct
gene family size in yeast species that are not derived from the ancient poly-
ploid. We applied the same model to the ML trees and the empirical CCDs
derived from the bootstrap replicates (note that an ML tree, i.e. a single topol-
ogy, can be represented as a trivial empirical CCD). Posterior mean parameter
estimates and 95% posterior uncertainty intervals are displayed in tbl. 6.1

Table 6.1: Marginal posterior mean estimates for the various model parameters of the
DLWGDmodel with constant rates across 𝑆 applied to maximum likelihood gene tree
topologies (ML) or CCDs derived from maximum likelihood tree topologies of 1000
bootstrap replicates for 100 random gene families from the twelve-taxon yeast data set.

data set 𝜆 𝜇 𝑞

ML trees 0.14 (0.11, 0.18) 1.25 (1.20, 1.31) 0.19 (0.13, 0.26)
CCDs 0.04 (0.02, 0.05) 0.35 (0.32, 0.39) 0.27 (0.19, 0.35)

Clearly, ignoring gene tree uncertainty leads to considerably higher parameter
estimates, with almost a fourfold difference in the estimated duplication and
loss rates. This is expected: noisy ML gene tree topologies which are incom-
patible with the species tree will lead to larger estimated evolutionary rates,
as the latter result in a larger variance in the sampling distribution. Notably,
the WGD retention rate estimate also differs, the direction of the difference
however not being predictable in the same way. A related effect is that ignor-
ing uncertainty in the gene tree topologies leads to more uncertainty in the
gene tree reconciliation (fig. 6.7). The estimated posterior probability of the
MAP reconciled tree is much larger on average when inference is based on
the CCD than on the ML tree, and concomitantly, the entropy of the posterior
sample is much lower. There is little correlation between the entropy of the

12Note that we illustrate the issue using the statistical reconciliation approach developed in the
first part of the present chapter. The issue of gene tree uncertainty is pertinent for any two-step
approach, independent of whether maximum parsimony or model-based statistical inference is
conducted.
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Figure 6.7: Whale reconciliation results for 100 gene families of the 12 yeast data set,
using either ML trees as input data or CCDs derived from 1000 bootstrap replicates.
(A) Estimated posterior probability �̂�MAP of the MAP reconciled tree and (B) entropy
𝐻 of the posterior sample over reconciled trees. Families are sorted independently for
each data set. (C) Scatter plot of the entropy of the posterior sample of reconciled trees
for each family for both data sets (i.e. each dot represents the entropy of the sample from
the posterior distribution over reconciled gene trees for a single family for the ML tree
as input data 𝐻ML versus the empirical CCD as input data 𝐻CCD).

posterior distributions for a single family for both data sets. In line with all
this, reconciled trees based on the CCD showmuch fewer duplication and loss
events compared to reconciled trees based on ML trees (fig. 6.8). The biases
first brought to attention by Hahn (2007) are clearly visible here, where recon-
ciliations based on ML trees tend to show a lot of duplications near the root
followed by losses down the tree (fig. 6.9). Uncertainty-aware reconciliations
based on the CCDs clearly do not show this bias to the same extent. □

Many authors are aware of some of the above issues, and mitigate these by
resorting to intuitive but ad hoc filtering criteria and combining evidence from
gene trees with other sources, such as𝐾S distributions and synteny (e.g. Yang
et al. 2018; Li and Barker 2020). Here is an illustrative example from Yang
et al. (2018)

“To map polyploidy events in each subclade, we extracted orthogroups
from each subclade homolog tree, requiring nomore than twomissing in-
group taxa. When two ormore taxa overlapped between the two daughter
clades, a gene duplication event was recorded to themost recent common
ancestor (MRCA) on the subclade species tree (Yang et al. 2015). In
this procedure, each node on a species tree can be counted at most once
per orthogroup to avoid nested gene duplications inflating the number
of duplications scored. Two alternative filters were applied for compar-
ison. The first filter required an average bootstrap percentage of each
orthogroup to be at least 50. Alternatively, we also tested a local topol-
ogy filter that only mapped a gene duplication event when the sister clade
of the gene duplication node in the orthogroup contained a subset of the
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Figure 6.8: (A) MAP reconciled tree for a random family assuming a fixed (ML) tree
topology. (B) MAP reconciled tree for the same family using the CCD as data. On the
left we show the ‘fit’ inside the species tree (see fig. 6.1), while on the right we show
the gene tree topology. The estimated posterior probability (𝑝) is indicated above each
reconciled tree. Black nodes mark speciation events, orange nodes mark duplication
events, blue nodes mark retention afterWGD and green nodes mark non-retention after
WGD. Gray branches indicate subtrees where the gene lineage present at the source
vertex of the branch did not leave observed descendants (i.e. went extinct or otherwise
unsampled).
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Figure 6.9: Expected number of represented duplication and loss events for the data
set of 100 gene families from 12 yeast species. The numbers correspond to the average
number of duplication/loss nodes in the gene trees for each branch of the species tree
across 1000 samples of reconciled trees for each of the 100 families. In black (below
each branch) the numbers for the ML tree input data are shown, whereas in orange we
show the estimates for the CCD-based analysis which takes into account uncertainty
in the gene trees. Note that the loss event count for the branch leading to the MRCA
of sce and tph includes losses after the hypothetical WGD (i.e. a non-retention ‘event’
in the DLWGD model).

taxa in the corresponding sister clade in the species tree.”

Similar recipes can be found in papers from other authors. While of course
reasonable andmotivated by prudence, this is a far cry from a direct tackling of
finding out what evidence the data bears for our questions of interest. Instead,
what we get is a further complexification of the already bewildering garden of
forking paths that is characteristic of many bioinformatic analyses.

The methods developed in the present chapter should allow for better
approaches towards the problem of WGD inference from gene trees. In
particular, the statistical framework admits to address two types of questions
in a scientifically more satisfactory manner: (1) “What is the evidence for
a gene pair to be derived from a duplication event along branch 𝑒 of the
species tree given the sequence data” and (2) “What is the evidence for a
WGD event occurring along a particular branch of the species tree given
the sequence data?”. The central assumptions which shall condition our
answers to these questions are of course (1) birth-death like evolution of
gene families and (2) standard Markovian sequence evolution. Our answers
will be approximate, in the sense that we use the ALE approximation to the
joint likelihood, adopting the phylogenomic forest point of view instead of



229

full joint (Bayesian) inference. In the next section we illustrate, by means
of several examples, the use of statistical reconciliation under phylogenetic
BDP models for the study of ancient WGDs.

6.3.3 Statistical inference under the DLWGD model

Freedom: It’s not user friendly.
Disbelief: Remains an option.

Statistical lexicon – Andrew Gelman

The DLWGD model of Rabier, Ta, and Ané (2014) (see chapter 3 and
sec. 6.2.1.3) is a model of genome-wide gene family evolution that admits
statistical assessment of hypothetical WGDs in a phylogenetic setting. We
already illustrated the approach of Rabier, Ta, and Ané (2014), and discussed
its shortcomings, in chapter 3. Evidently, the ML-based model selection
approach (using the likelihood ratio test statistic) of these authors carries over
without complications to the reconciliation setting13. Consider the following
running example:

Example (land plants). It is widely believed that an ancient WGD event pre-
ceded the diversification of seed plants and another one the diversification of
angiosperms. More recently, a WGD has been reported to have preceded the
diversification of gymnosperms as well (Y. Liu et al. 2022). The actual sup-
port for many of these claims is however rather unclear. The first study to
report a seed plant and angiosperm WGD (Jiao et al. 2011), which relied on
gene tree reconciliation and phylogenomic dating, is likely plagued bymethod-
ological issues (Ruprecht et al. 2017), and so far, synteny information has
not provided conclusive evidence for more than one WGD preceding the an-
giosperm crown (Albert et al. 2013). The claim of a gymnosperm-specific
WGD in Y. Liu et al. (2022) is based on a two-step reconciliation approach
which accounts for uncertainty in the gene trees using ad hoc filtering crite-
ria and does not assume a model of gene family evolution. Liu et al. (2021)
used Whale in a Bayesian analysis for the Ginkgo biloba genome paper and
show support for an ancient WGD in the seed plant, but not gymnosperm,

13Note that in Rabier, Ta, and Ané (2014), the authors did in fact also study a gene tree
reconciliation-based method for the inference of ancient WGDs using the ML/LRT approach.
However, they reported less accurate estimates and lower power to detect WGDs compared to
their gene count method, likely because of the various simplifying assumptions and coarse opti-
mization approach adopted for the sake of computational feasibility. The ALE approach of Szöl-
lősi, Rosikiewicz, et al. (2013) adopted by us in Whale circumvents many of the computational
issues in Rabier, Ta, and Ané (2014).
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Figure 6.10: Species tree for the 11-taxon land plant data set. The time scale along the
horizontal axis is 50 My. Dots mark WGD hypotheses assessed in our analyses with
Whale . The time point of the hypothetical WGD is set to the midpoint of the relevant
branch for all but 𝑞1 and 𝑞9, where we used WGD date estimates reported in Vanneste,
Van de Peer, and Maere (2013) and Tiley, Ané, and Burleigh (2016) respectively. The
white dots mark hypothetical WGDs where we coudl not reject the null hypothesis
(𝑞 = 0) using the LRT under the constant rates (strict DL clock) DLWGD model.

stem branch. However, the latter study did not report the details of the em-
ployed statistical model, which renders their analysis moot (and suspect)14.
We note that both the Ginkgo and Cycas genomes show a clear sign of WGD
in their respective𝐾S distributions, and that this signature likely reflects a sin-
gle WGD event which precedes the divergence of the two (Roodt et al. 2017).
In Zwaenepoel and Van de Peer (2019a), we showed that, when taking into ac-
count gene tree uncertainty, it is not straightforward to conclusively associate
the putative WGD-derived duplicates in Ginkgo with either the seed plant or
gymnosperm stem branch.

Clearly then, we consider the problem unsolved. To study the problem
using the methods developed in the present chapter we obtained a data set
consisting of the complete set of protein-coding sequences from 11 taxa
sampled across the phylogeny of land plants. Specifically, we include
Physcomitrium patens, Marchantia polymorpha, Selaginella moellendorffii,
Azolla filiculoides, Salvinia cucullata, Ginkgo biloba, Sequoiadendron

14This is all the more upsetting as in the Reporting Summary that comes with the paper of
Liu et al. (2021) (the Nature group introduced these in 2017 to combat irreproducibility (Nature
2017)), the authors mark the ‘not applicable’ checkbox next to the item with the following de-
scription: “For Bayesian analysis, information on the choice of priors and Markov chain Monte
Carlo settings”. We also take the opportunity to note the rather silly identification on Nature’s
part of Bayesian analysis with MCMC.
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giganteum, Cycas panzhihuaensis, Amborella trichopoda, Vitis vinifera and
Beta vulgaris (see Appendix B for details). We used Orthofinder (Emms
and Kelly 2019) to delineate orthogroups, filtered out those families which
did not contain at least one gene in each clade stemming from the root of
the species tree, and obtained a random subset of 1000 gene families for the
sake of computational efficiency. We inferred codon-level multiple sequence
alignments with MAFFT (Katoh and Standley 2013), trimmed the alignments
using TrimAL (Capella-Gutiérrez, Silla-Martı́nez, and Gabaldón 2009, using
the -automated1 strategy) and obtain an empirical CCD for each gene family
based on a sample of 10000 gene trees from the posterior distribution under
the GTR + Γ4 model with default priors using MrBayes (sampling every
50 iterations for a total of 550000 iterations, discarding 1000 samples as
burn-in, running two chains in parallel). We restrict our analyses further to
the 949 families for which we obtained a minimum ESS of 100 for the total
tree length and for which the average standard deviation of split frequencies
(ASDF) was lower than 0.05. We use a dated species tree from the study of
Morris et al. (2018) in our analyses.

A ML-based statistical analysis of the data is presented in tbl. 6.2. We fix
the parameter of the geometric prior on the number of ancestral lineages to
𝜂 = 1∕1.5 (based on the average non-extinct family size in the data) and esti-
mate a single duplication and loss rate for the entire species tree 𝑆, as well as
retention probabilities for 10 WGD hypotheses specified along 𝑆 (see tbl. 6.2
and fig. 6.10). We test each WGD hypothesis against the model including all
other WGDs but the focal one. The LRT approach of Rabier, Ta, and Ané
(2014) would result in the rejection of the null hypothesis (𝑞 = 0, which we
identify with the absence of a WGD) for each of the marked WGD hypothe-
ses, except for the event associated with the Ginkgo-Cycas ancestor and the
hypothetical angiosperm-specific event. This includes both the hypothetical
seed plant and gymnosperm WGDs, with the latter having a fairly high MLE
for the retention probability (𝑞 = 0.19). □

While attractive, the statistical analysis presented in the above example can
be positively misleading. Any statistical inference is of course conditional on
the assumed model, which may or may not be reasonable. In this case, as was
already noted in chapter 3, our model assumptions include a strict DL clock,
i.e. constant rates of duplication and loss across the phylogeny, an assump-
tion which is very likely to be problematic. In Zwaenepoel and Van de Peer
(2019a) we showed that, as could be expected, violations of the DL clock as-
sumption in the LRT based method of Rabier, Ta, and Ané (2014) can lead
to high false positive rates, as well as limited power. Indeed, intuitively, if
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Table 6.2: ML-based analysis for the land plant data set. The table records MLEs for
the 10 retention probability parameters corresponding to the marked WGD events in
fig. 6.10. Each row displays the MLEs for an analysis holding none (first row) or a
single retention rate parameter fixed to 0 (indicated by the dash). 𝓁 is the maximum
log-likelihood value. Those log-likelihoods which do not differ significantly from the
full model log-likelihood are marked in bold.

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8 𝑞9 𝑞10 𝓁

0.36 0.08 0.12 0.08 0.19 0.01 0.08 0.00 0.09 0.07 -24633.44
- 0.02 0.11 0.07 0.18 0.00 0.04 0.00 0.07 0.00 -24786.39

0.36 - 0.12 0.08 0.19 0.01 0.07 0.00 0.09 0.06 -24642.72
0.35 0.08 - 0.08 0.19 0.00 0.06 0.00 0.09 0.05 -24714.60
0.35 0.07 0.12 - 0.20 0.00 0.07 0.00 0.09 0.05 -24675.97
0.35 0.06 0.12 0.10 - 0.03 0.08 0.00 0.09 0.04 -24839.20
0.36 0.08 0.12 0.08 0.19 - 0.08 0.00 0.09 0.07 -24633.95
0.35 0.07 0.12 0.08 0.19 0.00 - 0.00 0.09 0.05 -24647.21
0.36 0.08 0.12 0.08 0.19 0.01 0.08 - 0.09 0.07 -24633.44
0.35 0.06 0.12 0.08 0.19 0.00 0.07 0.00 - 0.05 -24670.41
0.36 0.07 0.12 0.08 0.19 0.01 0.07 0.00 0.09 - -24639.21

some branch in the phylogeny which underwent a WGD happens to have a
lower rate of small-scale duplication and/or higher rate of gene loss, we may
expect the power to detect WGD to be diminished with respect to strict clock
situation, whereas a branch with an increased (small-scale) duplication rate
and/or decreased loss rate relative to the rest of the species tree could lead
to false positive WGD inferences under the DLWGD model as formulated by
Rabier, Ta, and Ané (2014). As we noted in Zwaenepoel and Van de Peer
(2019a), this likely explains to some extent the observations of Tiley, Ané,
and Burleigh (2016), where the authors report that the power to detect certain
ancient WGDs depends on the sampled taxa.

While the ML-based approach does not readily provide us with a means to
investigate the extent of (unavoidable) model violations, we can investigate
model fit for the constant rates model by using a Bayesian analysis and con-
ducting posterior predictive simulations. We illustrate this continuing our
analysis of the land plant data set.

Example (land plants, continued). We reconsider the land plant data set
analyzed above, now using a Bayesian model with a Beta(4, 2) prior for the
parameter of the Geometric distribution on the number of lineages at the root,
an exponential prior with mean 1 for both the duplication and loss rate and
uniform prior for the retention probabilities 𝑞1, 𝑞2,… , 𝑞10. The marginal pos-
terior mean parameter estimates and 95% uncertainty intervals are shown in
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tbl. 6.3. We note that we estimate 𝜂 = 0.86 (0.84, 0.89)15, which is quite a
bit higher than the estimate based on extant family sizes (0.66). This would
indicate that the ancestral gene family size was, on average, 1.16, instead of
the presently observed 1.5. As expected, the marginal posterior means cor-
respond almost exactly to the MLEs. The Bayes factors (which constitute a
Bayesian analog of the LRTs of Rabier, Ta, and Ané (2014), see chapter 3)
lead to similar conclusions, with the data not providing evidence for non-zero
retention probabilities for the hypothetical Cycas-Ginkgo WGD nor the seed
plant WGD under the model.

Table 6.3: Posterior mean and 95% uncertainty intervals for the various parameters
in the constant rates DLWGD model. The last column shows the log10 bayes factor
against the WGD hypothesis, computed using the Savage-Dickey density ratio (see
chapter 3). Duplication and loss rates are on a scale of expected number of events per
lineage per 100 My.

mean 2.5% 97.5% log10 𝐾

𝜂 0.86 0.84 0.89
𝜆 0.06 0.06 0.07
𝜇 0.09 0.09 0.10
𝑞1 0.36 0.32 0.41 < −3
𝑞2 0.08 0.04 0.12 −1.0
𝑞3 0.12 0.10 0.15 < −3
𝑞4 0.08 0.06 0.11 < −3
𝑞5 0.19 0.16 0.22 < −3
𝑞6 0.01 0.00 0.02 1.7
𝑞7 0.08 0.05 0.11 < −3
𝑞8 0.01 0.00 0.02 1.8
𝑞9 0.09 0.07 0.12 < −3
𝑞10 0.07 0.03 0.11 −0.9

We conducted posterior predictive simulations to assess the fit of the constant
rates DL model to the data. Specifically, we sample 𝑁 parameter vectors
(𝜃1,… , 𝜃𝑁 ) from the posterior distribution, and for each 𝜃𝑖, 1 ≤ 𝑖 ≤ 𝑁 , we
obtain a setΨ𝑖 of reconciled trees for all 949 families using the stochastic back-
tracking algorithm, as well as a set Ψ̃𝑖 of reconciled trees for 949 simulated
gene families conditional on 𝜃𝑖. In our notation:

Ψ𝑖 = (1,… ,𝑛) where 𝑗 ∼ 𝑝(𝑗|𝑦) = ∫ 𝑝(𝑗|𝑦𝑗 , 𝜃)𝑝(𝜃|𝑦)𝑑𝜃
15As elsewhere, we report point estimates (marginal posterior means) with 95% posterior den-

sity intervals, which are both estimated from a MCMC sample from the posterior. The MCSE of
the estimators is virtually always negligible and not reported.
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Ψ̃𝑖 = (̃1,… , ̃𝑛) where ̃𝑗 ∼ 𝑝(̃|𝑦) = ∫ 𝑝(|𝜃)𝑝(𝜃|𝑦)𝑑𝜃
where 𝑛 = 949 for this specific example. Note that each Ψ̃𝑖 constitutes a sam-
ple from the posterior predictive distribution of the same size as the observed
data. We can use these simulations to assess the discrepancies between the
observed data and predictions under the model by comparing statistics 𝑇 of
interest between Ψ and Ψ̃, such as, for instance, the number of duplication or
loss events on each branch of the species tree.16 If themodel provides a reason-
able fit, we would expect 𝑇 (Ψ) ≈ 𝑇 (Ψ̃), whereas any systematic discrepancy
between the two suggests that 𝑇 points at an aspect of the data which is not ad-
equately captured by the model. In fig. 6.11, we show a graphical model check
(black scatter plots), comparing the posterior number of duplications on each
branch of the species tree against posterior predictive simulations thereof for
𝑁 = 100 draws from the posterior. These simulations indicate that the model
provides a reasonable fit in some parts of the species tree, whereas it has more
issues in other parts. Clearly, the number of represented gene duplication
events along the branch leading toMarchantia (mpo) is much smaller than ex-
pected under the model, and similar observations hold for Cycas, Ginkgo and
the moss stem branch ((ppa,mpo), to a lesser degree). The opposite appears
to hold for Salvinia, Vitis, Beta and the euphyllophyte stem (scu,cpa). The
lack of fit seems to be more extreme when we consider related test statistics
(figs. 6.12, 6.13, 6.14). The most obvious explanation for the observed dis-
crepancies appears to be rate heterogeneity across lineages, where the globally
(phylogeny-wide) estimated 𝜆 and 𝜇 do not appear to reasonably predict the
number of duplication events for individual branches of 𝑆. □

As in chapter 3, we can combat these issues in the Bayesian framework by
adopting a hierarchical model to describe the variation of gene duplication
and loss rates across the species tree 𝑆. The approach is entirely analogous to
what we described for our gene count analyses under the phylogenetic BDP
model of gene family evolution, so we refer the reader to the relevant chapter.
We pick up the land plant example again to illustrate the Bayesian inference
approach first used in Zwaenepoel and Van de Peer (2019a).

Example (land plants, continued). To account for rate heterogeneity across
branches of 𝑆, we specify the following hierarchical model (where 𝑛 = 11 is

16For a discussion of posterior predictive test quantities which depend not only on the data 𝑦,
but also on the parameters 𝜃, see Gelman et al. (2013) chapter 6 (p.148).
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Figure 6.11: Posterior predictive model checks for the constant rates DL model (black)
and the relaxed DL clock model (red) fitted to the land plant data set. For each branch
of the species tree we show a scatter plot where each dot is associated with a single
parameter vector 𝜃 drawn from the posterior distribution 𝑝(𝑦|𝜃). For each dot the 𝑥-
coordinate marks the number of duplication events in the sample of reconciled trees
for the observed data conditional on 𝜃 for the relevant branch of 𝑆, whereas the 𝑦-
coordinate marks the number of duplication events in a data set of 949 families drawn
from the predictive distribution conditional on 𝜃. The titles indicate the target vertex
of the relevant branch, where, for instance, mpo,ppa refers to the branch leading to the
MRCA ofM. polymorpha and P. patens, and (wgd) ppa refers to the branch leading to
the WGD node parental to P. patens (see fig. 6.10 for the relevant WGD nodes).
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Figure 6.12: As in fig. 6.11, but showing, for each branch of the species tree, the
number of represented speciation events which are followed by extinction down the
subtree rooted in the relevant branch. For instance in the vvi panel, we show the number
of B. vulgaris, V. vinifera nodes in the simulated reconciled trees which are followed
by extinction along the branch leading to vvi.
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Figure 6.13: As in fig. 6.11, but showing the number of gene tree nodes reconciled
to the speciation nodes or leaf nodes associated with the indicated branch. For leaf
nodes (the first 11 plots), this amounts to a comparison of the observed family sizes
(the 𝑥-coordinate is the total number of genes of that species in the 949 gene families)
against posterior predictive simulations thereof.

Figure 6.14: As in fig. 6.11, but showing the number ofWGD retention events (top two
rows) and non-retention events (bottom two rows) for each node of the species tree.
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the number of taxa, and 𝑚 = 10 is the number of hypothetical WGDs)

𝜂 ∼ Beta(4, 2)
𝜏 ∼ Exponential(0.5)
𝑟1 ∼  (log(0.07), 1)
𝑟2 ∼  (log(0.07), 1)

log 𝜆𝑖|𝑟1, 𝜏 ∼  (𝑟1, 𝜏) 𝑖 = 1,… , 2𝑛 − 2
log𝜇𝑖|𝑟2, 𝜏 ∼  (𝑟2, 𝜏) 𝑖 = 1,… , 2𝑛 − 2

𝑞𝑗 ∼ Uniform(0, 1) 𝑗 = 1,… , 𝑚

In molecular evolutionary terms, this amounts to an uncorrelated log-normal
relaxed clock model (actually, two independent ones). Of course, many dif-
ferent models can be conceived to account for rate variation, among which we
note models where the rates are themselves considered as quantitative traits
evolving along 𝑆 according to some stochastic process, such as, for instance,
a (geometric) Brownian motion or a multivariate process modeling the joint
evolution of duplication and loss rates. We explored this in more detail in
Zwaenepoel and Van de Peer (2019a) and Zwaenepoel and Van de Peer (2020).

A sample from the posterior distribution for the 10 retention probability param-
eters is shown in fig. 6.15. Bayes factors computed using the Savage-Dickey
density ratio under a KDE approximation yield substantial or strong evidence
for non-zero 𝑞 only for the gymnosperm (𝑞5), eudicot (𝑞9) and Physcomitrium
(𝑞1) events. We find that the standard deviation of the clock model 𝜏 has a
marginal posterior mean of 1.0 (0.76, 1.33), and that there is, concomitantly,
substantial rate variation. Some branch rates appear suspiciously large, such
as the loss rate of 0.88 (0.60, 1.19) events per gene per 100 My for the moss
stem branch. The latter would entail that a single lineage at the root has a prob-
ability of 0.23 (0.16, 0.29) to leave no descendants at the moss crown group.
Note, however, that we condition the likelihood on there being at least one ob-
served descendant in each clade stemming from the root. In other words, the
estimated rates may yield a good fit conditional on non-extinction, while mak-
ing a possibly unrealistic prediction with regard to the number of unobserved
families (i.e. families which are extinct or do not leave observed descendants
in either clade stemming from the root). Indeed, we find that to obtain a sim-
ulated data set of 947 families with at least one observed descendant in both
clades stemming from the root, we have to reject 317 (234, 424) simulated
gene families as unobservable under our filtering strategies, whereas for the
constant rates model analyzed above, this was 183 (159, 209). Nevertheless,
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Figure 6.15: Marginal posterior distributions for the retention probabilities 𝑞 and
species trees colored by branch-specific marginal posterior mean duplication rates (𝜆,
left) and loss rates (𝜇, right). The indices for the retention probability parameters cor-
respond to those indicated in fig. 6.10. The orange lines show the KDEs fitted to the
marginal posterior distributions on which we base the calculation of the Savage-Dickey
ratio. The number on top of each branch is the marginal posterior mean rate estimate
for that particular branch.

posterior predictive model checks suggest that the model fits the data rather
well, in the sense that random gene families simulated under the posterior (con-
ditional on non-extinction, as noted above) agree very well with reconstructed
reconciled trees for the observed data in terms of duplication, loss, speciation
and WGD event counts as well as observed family sizes at the leaves of 𝑆
(figs. 6.11, 6.12, 6.13, 6.14, red scatter plots). For the loss-related posterior
predictive test quantity (fig. 6.12), we still observe some problematic branches,
especially deep in the phylogeny, such as the branches leading to the euphyllo-
phytes and the tracheophytes, as well as, to a lesser extent, the Cycas-Ginkgo
stem branch.

Clearly, under this model, evidence for many putative ancient WGDs is con-
siderably weaker than under the (generally more problematic) strict DL clock
assumption. Consider for instance the putative core leptosparangiate shared
WGD (see also Chen et al. 2022), with retention probability parameter 𝑞2. In
the constant rates analysis, we find strong support for non-zero 𝑞2, whereas
the relaxed clock analysis shows that, while the data is compatible with 𝑞2 at
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least as high as 10%, the data is also compatible with 𝑞2 = 0. Similar ob-
servations hold for the other WGD hypotheses that would be accepted when
naively applying LRT-based model selection or Bayes factors computed under
the constant rates DL model. We note that while a WGD in the Azolla lineage
is well supported from other sources (Chen et al. 2022), our analysis is rather
undecisive with regard to this event. While the marginal posterior histogram
and mean of 𝑞3 = 0.07 (0.01, 0.13) are suggestive of WGD, the posterior is
compatible with 𝑞3 = 0. Similarly, the marginal posterior distribution for 𝑞4
may suggest some signal for the hypothetical seed plant WGD event, however
the posterior shows that under the relaxed clock model, the data are perfectly
compatible with 𝑞4 = 0. □

What can we learn from the land plant example? It seems that gene tree
topologies alone cannot provide conclusive evidence for many WGD events
when they are analyzed under flexible models which provide a reasonable
fit to the data. Stated in other words, if we admit rate variation across lin-
eages of the species tree, we are lead to the conclusion that observed gene
tree topologies are largely compatible with a linear phylogenetic BDP model,
even when WGDs are actually known to have occurred (as for Azolla in the
land plants analysis). On the other hand, for some known WGDs, such as the
Physcomitrium and eudicot WGD17 in the example above, we do find consis-
tent support even if we admit rate variation, suggesting that a flexible phylo-
genetic BDP cannot always adequately capture the genome-wide effect of a
WGD on gene family evolutionary histories. Similar observations were made
for Bayesian analyses based on gene counts in chapter 3. It is, in that regard,
rather unsurprising that evidence for WGD events deep in the species tree is
scarce when gene tree topologies are properly analyzed. Uncertainty in the
gene trees for these deep splits will result in many reconciliations being rea-
sonably plausible under the model, rendering any strong signal for a deviation
from the linear BDP model unlikely. Do note however that the analysis pre-
sented above is based on a reduced data set of 1000 families and a fairly small
phylogeny for the sake of computational efficiency. In the era of extensive
genome sequencing, one can always gather more data to address these kind of
evolutionary questions, but this comes at the cost of increased computational
demands and a more complicated (and sometimes precarious) statistical work-
flow.

Importantly, notwithstanding the observation that the model provides a rea-
17This is in fact thought to be a triplication, i.e. involving an ancestral hexaploid phase, a

detail we gloss over here. We note that this renders the associated retention probability 𝑞 hard to
interpret.
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sonable fit to the data, care needs to be taken when interpreting results like
those presented in the above example. The interpretation of non-zero 𝑞 as
the probability of duplicate retention after WGD, or as signal for WGD in a
weaker sense, rests on a number of assumptions which are almost surely not
met. Firstly, we reiterate that what the WGDs in the DLWGD model capture
are genome-wide deviations from a linear BDP, the latter being assumed as
an adequate model of small-scale duplication and loss within a branch. When
phrased this way, it is clear that these genome-wide deviations from a phylo-
genetic linear BDP need not in fact correspond to WGDs, even if the model
was designed with this in mind. In particular, ILS, (possibly allopolyploid)
hybridization, delayed rediploidization (Robertson et al. 2017) and introgres-
sion may cause genome-wide deviations from a BDP model which could, po-
tentially, lead to non-zero 𝑞. Hence, it would be unwise to claim, for instance,
strong evidence for a shared gymnosperm WGD based on the above results,
without assessing whether those gene pairs that supposedly diverged after a
duplication along the gymnosperm stem branch are in fact compatible with
the hypothesis of a WGD event. We return to this problem shortly.

Besides the basic flaws and caveats associated with the DLWGD model, four
serious, and related, weaknesses of the approach exemplified above should
be noted. The first is that we are specifying WGD hypotheses along 𝑆 a pri-
ori, and are not discovering them from the data in an ‘automatic’ way. The
reversible-jump MCMC algorithm for inference across model space, outlined
in chapter 3 and Zwaenepoel and Van de Peer (2020), could be of use here, but
would lead to considerable computational challenges. The second is an im-
plementation detail18 which is not a fundamental limitation of the approach,
namely that in the above, we have fixed the time point of each WGD along
the associated branch of 𝑆, whereas we usually have no clue about this a
priori (in the land plant example, we used substantive prior information for
this only for Physcomitrium). The third is our reliance on an assumed known
dated species tree. If the topology of the latter is incorrect, this will render
the whole analysis problematic for obvious reasons, whereas systematic er-
rors in relative branch lengths could lead to biases in the rate estimates and
estimates of rate heterogeneity across 𝑆. The last weakness is that we do not
make use of branch length information. Clearly, this would provide additional
information for distinguishing small-scale duplication fromWGD-derived du-
plication events, and hence further improve duplication and loss rate estimates

18By implementation detail, we mean to suggest something that presents no theoretical issues,
but does require a considerable programming effort. In this case, allowing the WGD timings to
vary along a designated branch should indeed present no theoretical difficulties, but would require
a reimplementation of a nontrivial part of Whale, which will be done in due time.
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while increasing the power to detect WGD events. This could be particularly
impactful for relatively recent WGD events, where the molecular distances
between WGD-derived duplicates should be strongly correlated and the asso-
ciated node ages concentrated to a rather narrow peak, whereas the node ages
for small-scale duplication events should, under neutral evolution, be approxi-
mately exponentially distributed under the linear BDP model (see chapter 2).

6.3.4 Probabilistic homology inference

The statistical reconciliation approach developed (and advocated) in the
present chapter gives us another powerful tool for studying WGD, quite in-
dependent of the statistical analysis under the DLWGD model first proposed
by Rabier, Ta, and Ané (2014). This tool is the statistical assessment of
homology relationships, which allows us to address questions like “what is
the probability that a given gene pair derives from a duplication event on
branch 𝑒 of 𝑆?”. This allows us to provide a statistically more adequate
means to quantify the number of duplication and loss events along each
branch of the species tree compared to the standard two-step approach, by
acknowledging both gene tree and reconciliation uncertainty. To clarify, we
return once more to the land plants data set.

Example (land plants, continued). The analysis above indicated strong ev-
idence for a gymnosperm-specific WGD conditional on the model assump-
tions, while the results are not conclusive with respect to a seed plant nor an-
giosperm specific WGD, although the former appears more probable than the
latter based on the analyzed data. As noted above, while suggestive, it would
be unwise to base any strong claims on this kind of analysis, since there exist
plenty of biological processes which may lead to systematic model violations
that could be mistaken for WGD under the DLWGD model. To further assess
these results, we leave the genome-wide view and zoom in on individual gene
pairs. For each family in the full data set (which consists of gene tree distri-
butions for 7526 families, obtained using the same methods as the set of 949
families above), we sample 100 reconciled trees under the posterior distribu-
tion from the analysis above based on the 949 families set. That is, denoting
the small data set by 𝑦[949], we sample for each family 𝑖 = 1,… , 7526 from

𝑝(𝑖|𝑦) = ∫ 𝑝(𝑖|𝑦𝑖, 𝜃)𝑝(𝜃|𝑦[949])𝑑𝜃
Based on these samples, we can estimate for each homologous gene pair in
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Figure 6.16: Statistical homology assessment and 𝐾S distributions for duplication
events along different branches of the species tree for the three gymnosperm taxa in the
land plants data set. (A) 𝐾S distribution for paralogous Cycas gene pairs weighted by
the posterior probability of being reconciled as a duplication to the Cycas tip branch,
gymnosperm stem branch, seed plant stem branch and euphyllophyte stem branch. (B)
and (C) show the same but for Ginkgo and Sequoiadendron respectively. (D) Scatter
plot of the posterior probability of being reconciled to the gymnosperm vs. seed plant
stem branch for each duplicate gene pair. (E) Whole-paranome 𝐾S distribution for Cy-
cas with the putative gymnosperm and seed plant signatures overlaid (we show KDEs
for the same distributions as displayed in the middle two plots of panel (A)).

the data set the posterior probability distribution over possible reconciliations.
In addition, we estimated for each homologous gene pair in the data set the
synonymous distance by maximum likelihood using codeml (Z. Yang 2007b,
using runmode=-2, CodonFreq=2 and default settings otherwise).

In fig. 6.16, we show, for duplicate gene pairs in Cycas, Ginkgo and Se-
quoiadendron, a histogram of pairwise 𝐾S estimates where each estimate
is weighted by the estimated posterior probability for the associated pair of
being reconciled as a duplication event along (1) the relevant tip branch,
(2) the gymnosperm stem branch, (3) the seed plant stem branch and (4)
the euphyllophyte stem branch. The 𝐾S distributions for the duplicate pairs
associated with the tip branches clearly show the expected exponential shape,
whereas we find that the duplicates associated with the putative gymnosperm
WGD show a clear peak around 𝐾S ≈ 1, coinciding with the signature in
the whole-paranome 𝐾S distribution. This provides additional evidence that
the signature in the whole-paranome 𝐾S distribution is associated with a
gymnosperm-specific event. However, we find that the 𝐾S distribution for
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Figure 6.17: As in fig. 6.16, but focusing on duplicate genes within angiosperm
genomes, i.e. (A) Amborella trichopoda, (B) Vitis vinifera and (C) Beta vulgaris.

the putative gymnosperm-specific duplicates overlaps almost completely
with the distribution for gene pairs that are likely (under the model) to
derive from duplication events, possibly from a WGD, associated with the
seed plant stem branch. Therefore, if both a gymnosperm and seed plant
WGD did occur, it appears not to be possible to distinguish between the two
based on molecular divergence. These results may however also suggest
that there is only a single event, with gene tree uncertainty ‘diluting’ the
signal over the two branches. The latter is to some extent contradicted by the
posterior reconciliation probabilities (fig. 6.16 D), where we can see that most
duplicates are either reconciled with high probability to the seed plant branch
or the gymnosperm branch, but rarely have high posterior probability for both.
For the angiosperms in the analysis, we similarly find no clear distinction
between putative angiosperm-specific duplicates and duplicates associated
with the seed plant stem in terms of molecular divergence (fig. 6.17). Notably,
the higher substitution rates in angiosperms compared to gymnosperms lead
to a higher variance in both the 𝐾S estimates and putative WGD signatures,
which renders ancient WGD hypotheses even harder to assess in this part of
the phylogeny. □

Our results in the land plants example confirm our previous analyses reported
in Zwaenepoel and Van de Peer (2019a), which were conducted with a differ-
ent sample of genomes. Taking everything together, a gymnosperm-specific
WGD event appears plausible, while we must remain rather inconclusive
concerning the hypothesized seed plant or angiosperm WGD events. Note
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that the actual history is almost surely more complicated. It is, for instance,
conceivable that the seed plant ancestor was a polyploid which did not
undergo complete rediploidization before the divergence of angiosperms
and gymnosperms. Many more evolutionary scenarios can be conceived,
limited only by our imagination. Comprehensive models which take every
possible evolutionary phenomenon into account will remain a fantasm. If
we are to figure out these sorts of details, however, it will involve finding
discrepancies between the data and predictions under some simpler model, a
task for which Bayesian statistical inference followed by model checking is
the Right Thing19.

The above case study further shows how we can use the results from a sta-
tistical reconciliation analysis in combination with external information to
check our models further, beyond the posterior predictive simulations of event
counts we used earlier. Specifically, we showed that the temporal information
in molecular sequence data agrees well with the fitted model of gene family
evolution. Of course, the reason we did this is because there is actual cogent
information which we did not yet take into account in our analysis, i.e. branch
length information. Ideally, this is taken up directly in the analysis, but while
awaiting the necessary methodological developments, the weighted 𝐾S distri-
butions shown in the above example provide an informative way to take this
information up in the model checking phase.

In the above example analysis our inferences were still conducted under the
DLWGD model with a relaxed clock model of rate variation along a time-
calibrated species tree. We can however use statistical reconciliation to assess
the evidence for WGD in a way more akin to the standard two-step approach,
without having to assume a dated species tree and explicit model of duplica-
tion and loss rate variation across the tree, nor having to specify a set of WGD
hypotheses a priori. Indeed, irrespective of whether the DLWGDmodel actu-
ally provides a good model of the evolutionary process, we may use the ALE
approach developed in the present chapter to conduct gene tree reconciliation
in a way which avoids the pitfalls of the standard two-step approach. Our
assumptions on the evolutionary process will be less precarious, while our in-
ferences will be restricted to simpler questions. All this should become more
clear in the following example.

Example (Droseraceae). As discussed in chapter 5, the Droseraceae family
19“That which is compellingly the correct or appropriate thing to use, do, say, etc. Often

capitalized, always emphasized in speech as though capitalized. Use of this term often implies
that in fact reasonable people may disagree.” (The Jargon file, v4.4.7).
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Figure 6.18: Whole-paranome and reciprocal best hit (RBH) ortholog𝐾S distributions
for the Droseraceae data set. (A) Histograms of node-averaged 𝐾S estimates for the
paranomes of the five Droseraceae species. (B) Kernel density estimates for whole-
paranome and RBH-ortholog 𝐾S distributions on a log10 scale.

of carnivorous plants (sundews and relatives) presents a particularly compli-
cated phylogenetic situation, with an evolutionary history characterized by
rampant polyploidization and hybridization. Analyses of genome structure in
chromosome-scale assemblies of Drosera capensis and Drosera regia reveal
that the former underwent a recent WGD, whereas the latter shows a clear
triplicate structure (see fig. 5.12 in chapter 5). D. capensis and D. spatulata
further seem to show evidence for a more ancient event, likely a triplication
(see again fig. 5.12). Whole-paranome 𝐾S distributions are consistent with
these observations (fig. 6.18). We note that an assessment of relative substitu-
tion rates suggests that the D. capensis synonymous substitution rate is about
three times that of D. regia, so that the D. regia WGT is in fact considerably
more ancient than the D. capensis WGD event, despite their overlapping 𝐾S
distributions. The relationship (if any) between the D. regia WGT and puta-
tive ancient WGT in D. capensis was investigated in chapter 5. Here we focus
on the recent event in D. capensis. The whole-paranome 𝐾S distribution for
D. spatulata suggests there to be no trace of the recentD. capensisWGD in its
close relativeD. spatulata, despite the synonymous divergence ofD. capensis
- D. spatulata orthologs being on average smaller than the synonymous diver-
gence associated with the D. capensis WGD (fig. 6.18). This indicates either
remarkably strong differences in synonymous substitution rates among these
closely related lineages, or, more likely, that the recent WGD in D. capensis
is associated with an allopolyploid hybridization event, wherein the D. capen-
sis lineage derives from an allopolyploid hybrid between two lineages that
diverged at distinct time points from the D. spatulata lineage.
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We conduct statistical reconciliation usingWhale to perform a more detailed
analysis at the gene family level. We consider a five taxon data set (consisting
of D. capensis, D. spatulata, D. regia, Chenopodium quinoa and Beta vul-
garis) (see Appendix B). We inferred anchor families (or microsynteny clus-
ters, see e.g. Zhao et al. (2021)) for the whole data set by inferring orthogroups
with OrthoFinder (Emms and Kelly 2019) (using default settings) and anchor
pairs using I-ADHoRe 3.0 (Proost et al. 2012; Fostier et al. 2011). Anchor
families are then obtained as the connected components in the graph where
genes are nodes and edges represent anchor pair relationships (i.e. genes
which are both homologous and colinear). For each family, we inferred an
amino acid MSA using MAFFT (Katoh and Standley 2013) and derived a
CCD based on a sample of 10000 trees from the posterior distribution of gene
tree topologies obtained using MrBayes, assuming the GTR + Γ4 model and
default priors for model parameters, branch lengths and topologies (see also
the land plants example above). We restrict the analysis further to those fam-
ilies for which the MrBayes sample had a minimum ESS > 200 for the total
tree length and ASDF < 0.025. The final set consists of 6066 anchor fam-
ilies. Note that, since gene duplicates derived from small-scale gene dupli-
cation events are not expected to be co-linear, variation in gene copy number
within and across anchor families should be largely due to duplications of large
chromosomal regions, as for instance caused by WGD or single-chromosome
duplications.

We assume an undated species tree phylogeny (see fig. 6.19) and estimate the
expected number of duplication and loss events per lineage for each branch
under the phylogenetic linear BDP model of gene family evolution, instead of
the associated rates per time unit. To do so, we set all species tree branches
to one, and assume an iid Exponential prior with mean 0.5 for the branch-
specific duplication and loss rates. We assume a Beta(5, 1) prior on the root,
roughly motivated by the observed anchor family size for B. vulgaris, which
is representative of a lineage which has not undergone any WGDs after the
eudicot (𝛾) triplication event (which should be shared by all genomes in the
sample). We sample, for each family, 1000 reconciled trees from the posterior
distribution and estimate the posterior probability distribution over possible
reconciliations for each duplicate gene pair in the data set. These probabil-
ity distributions are displayed in fig. 6.19. Clearly, most anchor pairs in D.
capensis appear to derive from duplication events along the D. capensis - D.
spatulata stem branch, and these appear to be associated with the most recent
WGD signature in the D. capensis 𝐾S distribution (around 𝐾S ≈ 0.2). On
the other hand, the (much less numerous) anchor pairs from D. spatulata that
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Figure 6.19: Statistical reconciliation analysis for the Droseraceae data set. The
heatmaps show the posterior reconciliation probability distributions for each dupli-
cate gene pair in D. capensis, D. spatulata and D. regia, i.e. showing for each pair
(column) the estimated posterior probability of being reconciled as a duplication to
specific species tree branches (rows) (the color scale is linear with black correspond-
ing to probability 0 and yellow to probability 1. The numeric labels for each branch
are displayed in the phylogeny in the upper right corner. The𝐾S distributions for gene
pairs inD. capensis (gray),D. spatulata (orange) andD. regia (green) are shown on the
right, where we show for each relevant branch of the species tree weighted histograms,
with weights derived from the estimated posterior probabilities (as in fig. 6.16).

Figure 6.20: Weighted𝐾S distributions forD. regia anchor pairs (weighted by posterior
reconciliation probability), as well as anchor pairs between D. regia and D. spatulata
and B. vulgaris. We show the sum of the relevant weights 𝑛 as an indicator of the
effective number of gene pairs in each component.
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have high probability to be derived from duplications along this branch are
associated with the older WGD signature shared by (at least)D. spatulata and
D. capensis (at𝐾S ≈ 1). This supports the allopolyploidy hypothesis outlined
above.

The𝐾S distribution for theD. regia tip branch is nearly indistinguishable from
the 𝐾S distribution associated with anchor pairs that putatively derive from
the Droseraceae stem branch (fig. 6.20). We note that there appears to be con-
siderable uncertainty in the reconciliations for the deeper events, with many
anchor pairs having high posterior probability to reconcile to both the root and
the Droseraceae stem. The 𝐾S distributions clearly suggest that those which
are reconciled with 𝑝 > 0.95 to the root are really ancient duplicates (proba-
bly from the eudicot WGT), whereas the others seem to be associated with the
Droseraceae-specific events (fig. 6.20). Note that the low substitution rate in
D. regia relative to the other Drosera species renders the interpretation of 𝐾S
distributions difficult. The analysis sheds little additional light on the evolu-
tionary sequence of polyploidization events associated with the anicentWGTs
in D. regia and D. capensis. □

In this example we see clearly how taking into account molecular divergence
(branch length information) in gene tree reconciliation analyses has the poten-
tial to substantially improve inferences. Indeed, information from 𝐾S distri-
butions suggests that reconciliation of (unrooted) gene tree topologies alone
cannot clearly discriminate between putative Droseraceae-specific duplication
events and eudicot-shared duplications, assigning appreciable probability for
the former to be reconciled to the root of the species tree. We found additional
evidence for the hypothesis that D. capensis derives from an allopolyploid an-
cestor, but we have not, however, explicitly accounted for this in our analysis.
In our final example we show how to account for allopolyploidization in the
statistical reconciliation approach.

Example (Drosera capensis allopolyploidy). To further assess the allopoly-
ploidy hypothesis, we extended the Whale algorithm to deal with so-called
multi-labeled (MUL) trees (see also chapter 5). Let 𝜚(𝑒) be the species of
which node 𝑒 in the species tree represents a subgenome. If we assume that any
assignment of a gene from an (ancient) allo-𝑘-ploid to any of its 𝑘 subgenomes
is equally likely a priori, we can modify the ALE recursion for leaf nodes so
that

𝑝𝑒(𝛾, 0) = 1∕𝑘

whenever 𝛾 is a leaf clade from 𝜚(𝑒) and species 𝜚(𝑒) is an allo-𝑘-ploid species
with 𝑘 represented subgenomes in the species tree. Using this slight modi-
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Figure 6.21: Posterior reconciliation probability distributions for the D. capensis an-
chor pairs in the MUL tree reconciliation analysis (see fig. 6.19). The MUL tree with
associated branch labels is shown on the left. Example reconciled MUL tree, showing
two retained D. capensis gene pairs from the allopolyploidy event.

fication of the ALE algorithm, we can conduct statistical reconciliation for
MUL trees. In fig. 6.21 we show the posterior reconciliation probability dis-
tributions for each D. capensis anchor pair. Clearly, these results suggest that
the majority of D. capensis anchor pairs derive from the putative allopoly-
ploidization event. We again find that deeper events in the gene trees tend to
be associated with more uncertain reconciliations.

Note that not only does this allow us to assess allopolyploidy hypotheses, it
also admits a statistical approach towards assigning homeologous genes to
their respective subgenomes. Indeed, we can sample reconciled trees from
the posterior distribution, and for each homeolog simply record the frequency
of seeing it reconciled to each of the eligible subgenomes (MUL species tree
leaves). However, for the present phylogenetic situation, one can not assign
an individual gene from D. capensis to a subgenome when it has no retained
duplicate using topological information alone. That is, one can not discrim-
inate between ‘((dca,dsp),loss)’ and ‘((loss,dsp),dca)’. Indeed, the posterior
distribution suggests that virtually all gene loss after the allopolyploidy event
occurred along the B subgenome lineage, with about 60% of the lineages pass-
ing through the subgenome divergence suffering loss along the B subgenome
lineage (tbl. 6.4). This is however an artifact, and should not be interpreted as
the amount of gene loss along the B lineage, but rather as the amount of gene
loss after allopolyploidy across both the A and B lineages. Consequentially,
we can only conduct subgenome assignment for retained homeologous pairs.
Doing so, we find that about 60% of theD. capensis anchor pairs in our data set
which reconcile with posterior probability > 0.95 to the node representing the
divergence of the subgenomes can be unambiguously phased with respect to
the two subgenomes (posterior probability > 0.95 for the subgenome assign-
ment of each gene in the pair). On the other hand, for a substantial portion
of the anchor pairs (the other 40%), uncertainty in the gene trees precludes a
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definite assignment. □

Table 6.4: Expected number of gene tree nodes per anchor family for each possible
species tree node/event combination. Note that the number in the ‘speciation’ column
for leaf nodes (first six rows) gives the average number of genes per family in the data
set reconciled to that leaf node.

clade duplication loss speciation

D. capensis (A) 0.02 0.07 1.21
D. capensis (B) 0.00 0.58 0.69
D. spatulata 0.00 0.04 1.22
D. regia 0.39 0.10 1.66
B. vulgaris 0.00 0.04 1.09
C. quinoa 0.90 0.02 2.01
D. capensis (A), D. spatulata 0.00 0.01 1.15
D. capensis (A), D. capensis (B) 0.04 0.13 0.68
D. capensis, D. regia 0.19 0.00 1.14
B. vulgaris, C. quinoa 0.05 0.10 1.07
D. capensis, B. vulgaris 0.18 . 1.08

We note that the MUL tree approach for dealing with allopolyploidy is qualita-
tively different from the DLWGD model, in that it does model the divergence
of the genomes which come together in a polyploidization event, but does not
model the rediploidization process. Indeed, the WGD event is not explicitly
represented in the model, and we cannot, therefore, model retention and non-
retention of duplicates after WGD as a process separate from the linear BDP
model. To do so, we would need a model which explicitly acknowledges the
reticulation in the species tree20.

6.4 Concluding remarks

In this chapter, we have outlined an approach for statistical gene tree reconcili-
ation with phylogenetic BDPmodels of gene family evolution. Using the prin-
ciple of amalgamation and the ALE algorithm of Szöllősi, Rosikiewicz, et al.
(2013) for approximating the marginal likelihood of the sequence data under
a model of sequence and gene family evolution, we have shown how we can
jointly reconstruct a gene tree and its reconciliation, or, in other words, con-
duct model-based gene tree reconciliation while acknowledging uncertainty

20Here, we should mention the work of Jones, Sagitov, and Oxelman (2013), where the authors
assessmore closely the difference betweenmodeling allopolyploid hybridization usingMUL trees
and phylogenetic networks. The setting there is however quite different, in that the authors focus
on species tree inference under the MSC model and do not consider multi-copy gene families.
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in the gene tree topology. We implemented the methods in a flexible prob-
abilistic programming framework allowing Bayesian statistical inference for
essentially arbitrary hierarchical models with a phylogenetic BDP sampling
distribution. This includes, but is not restricted to, relaxed DL clock mod-
els to account for rate heterogeneity across lineages of the species tree. We
showed, using example analyses, how the statistical approach to gene tree rec-
onciliation can be used to study and infer ancient WGDs in a phylogenetic
context, avoiding thereby many of the pitfalls associated with standard two-
step approaches used for these purposes.

As we noted in the introduction of the present chapter, approaches for joint
Bayesian inference under integrative models for sequence and (multi-copy)
gene family evolution have been developed, so an important question is why
we should be interested in the ALE approach towards gene tree reconciliation
at all. Clearly, an important reason is computational efficiency, which bears
not only on issues of time, resources and CO2, but also of statistical workflow
and implementation effort. Indeed, the statistical analyses are hard enough
already, and computational bottlenecks render the cycle of designing, fitting,
checking and expanding statistical models a painful process, which is likely to
affect the quality of the analysis – at least in our experience. By separating the
inference of the gene tree topologies from the reconciliation, we can delegate
the former to highly optimized MCMC samplers for phylogenetic inference
under CTMC models of sequence evolution (such as MrBayes), while focus-
ing our modeling (and implementation) efforts on the models of gene family
and genome evolution that we are interested in. The flipside of this division
of labor is of course that we lose statistical efficiency. By not being able to
take up sequence divergence information beyond the gene tree topologies, we
are not fully exploiting all available information in the inference of reconciled
gene trees and model parameters. Note that the ALE approach not only leads
to computational gains by splitting the problem in two independent steps, but
also that because of the efficient marginalization over the gene tree distribu-
tion in the amalgamation algorithm we do not need to explicitly deal with
reconciled trees during posterior inference. This enables the use of efficient
gradient-based MCMC samplers developed for continuous parameter spaces
when fitting the model of gene family evolution.

The use of an empirical CCD as an approximation of the posterior distribu-
tion over gene tree topologies may be subjected to further scrutiny. Clearly,
the ALE algorithm relies crucially on the conditional independence assump-
tion that underpins the CCD family of tree distributions. Furthermore, in
order for the ALE algorithm to be feasible, it is necessary for the CCD to
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have a relatively sparse support, which further seems to single out empirical
CCDs derived from samples of tree topologies. Nevertheless, it would defi-
nitely be interesting to investigate whether efficient algorithms for computing
the marginal likelihood under a phylogenetic BDP model can be devised for
other approximating families which should be more realistic, such as subsplit
Bayesian networks (Cheng Zhang and Matsen IV 2018a, 2018b).

The presented approach is intimately tied to the phylogenetic linear BDP
model. We have noted how the ALE approach would generalize to more
complicated models of gene family evolution, such as the two-type model
studied in chapter 3, however, the computational feasibility and statistical per-
formance of this remains to be assessed. We note that Szöllősi, Rosikiewicz,
et al. (2013) develop the ALE approach for a model with horizontal gene
transfer, a phenomenon which we ignored in the present chapter. A poten-
tially more serious issue is that the linear phylogenetic BDP model does
not account for the underlying population-level processes, and assumes, for
instance, that divergence of two lineages in the species tree coincides with
the divergence of two gene tree lineages. That is, we have been assuming
congruence between the locus and gene tree in the sense of Rasmussen and
Kellis (2012) (chapter 1). Hence we are not acknowledging the possibility
of ILS, neither at the gene nor locus level. Important steps in the direction
of integrating MSC-like models for gene genealogies with models of gene
family evolution by duplication and loss were taken in Rasmussen and Kellis
(2012) and more recently Li et al. (2021), but statistical inference for these
models remains challenging. Lastly, we have been assuming a fixed species
tree topology in our analyses, so that our parameter space can be brought in
bijection with ℝ𝑑 , enabling the application of efficient samplers (as already
noted above). It would of course be interesting to use the ALE approach for
joint inference of species trees and reconciled gene trees under phylogenetic
BDP models of gene family evolution (as for instance PHYLDOG does
(Boussau et al. 2013)). This would however again entail a departure from
the comfortable setting where we have a real parameter space, and would
reintroduce the problem of sampling from a distribution over tree space.
Nevertheless, the marginalization over the gene tree distribution in the ALE
algorithm entails that we would not have to sample gene tree topologies
jointly with species trees, which is the main computational bottleneck in joint
inference methods under the MSC (Rannala and Yang 2013). The potential
for species tree inference using the ALE approach remains untapped to date.

Important applications of phylogenomic reconciliation analyses are the quan-
tification of rates and events of genome evolutionary processes and the infer-
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ence and analysis of ancient WGDs. We have seen how standard two-step ap-
proaches based on ML gene tree reconstruction and naive, parsimony-guided
reconciliation can be problematic for these purposes, and we have shown
through examples how statistical reconciliation can tackle these problems in
a much more adequate way. Once again, we noted how ALE-like methods
which can take into account branch length information would be desirable,
as we currently cannot make use of the distinctively correlated molecular dis-
tances of WGD-derived duplicates in the inference of model parameters and
reconciled trees. Such an approach could also lead to improved methods for
dating ancient WGD events, a challenging problem of considerable interest,
given that many questions about the long-term evolutionary importance of
polyploidy hinge on our ability to place ancient WGDs in geological time
(Fawcett, Maere, and Van De Peer 2009; Vanneste et al. 2014; Clark and
Donoghue 2018). Note that the approach presented above could already prove
to be helpful in this regard. Indeed, we could use gene families for which there
is a reconciled gene tree with distinctively high posterior probability to con-
duct divergence time estimation with fixed gene tree topologies, using fossil
(node) calibrations for certain speciation nodes in the gene trees. Such an ap-
proach was in fact adopted in Clark, Puttick, and Donoghue (2019), although,
as in Vanneste et al. (2014), the authors conducted molecular dating for each
selected gene family independently. One could however share information
across families, as is typically done in divergence time inference for species
trees from single-copy gene families. To our knowledge, however, no im-
plementation exists at present for estimating divergence times in multi-copy
gene families on a genome-wide scale, but we note that, conceptually, when
we condition on the reconciled gene tree topology, this should be relatively
straightforward.
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7 Conclusion and future perspectives

En résumé, sans vouloir instruire le lecteur, nous serions payé de nos
peines, si nous pouvions le convaincre de pratiquer un exercise où nous
sommes maître: se moquer de soi-même. Aucun progrès n’est possible

dans la connaissance objective sans cette ironie autocritique.

Gaston Bachelard (1949)

Time has come to look back and face the bold desiderata set out in chap-
ter 1. The reader will have noticed that we are still rather far removed from
supplanting the plausible adaptive stories that pervade evolutionary genomics
with model-based statistical inferences. We believe we did contribute to that
challenge, or at least provided some tools to do so. In this final chapter, we
shall consider what we did and did not achieve in this regard, and what we
believe to be promising avenues for future research.

7.1 Modeling the bag

In order to start making sense of the pile of genomic data, we adopted the bag
of genes conception of a genome. The bag was partitioned in evolutionarily
relevant units, gene families, and we sought to devise statistical models that
describe the variation of these units within and across genomes. We have ap-
proached this general problem in two distinct ways. In the first part of this
work we considered models for gene content evolution, modeling variation
of gene family sizes in the phylogenetic context provided by the species tree.
In the second part we adopted a less coarse point of view where we consid-
ered gene trees and distributions thereof, modeling variation in evolutionary
histories across the genome at a finer scale.
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7.1.1 Gene content evolution

In chapters 2 and 3, we focused on modeling variation in gene family sizes us-
ing (phylogenetic) birth-death process models. These models are intuitive, in
that they appear as reasonable models of the mutational processes that drive
small-scale gene duplication and loss. In particular, the linear BDP, which
obeys the branching property, appears as a reasonable yet simple model in
that regard, assuming that the rate of a duplicative mutation is a property of
an individual gene, not a gene family. However, already in the single-genome
setting, we found the BDP models to be somewhat less than ideal as models
of gene family evolution. Furthermore, in chapter 3 we used Bayesian hierar-
chical models which account for many of the plausible additional sources of
variation (specifically, variation in the number of ancestral genes, rate varia-
tion across lineages and rate variation across families), and showed that the
linear phylogenetic BDP model is not usually an adequate model of gene fam-
ily evolution. One source of model violation that we could account for quite
succesfully was whole-genome duplication, and we harnessed this source of
variation to conduct inference of ancient WGDs in a phylogenetic context and
to study differential retention of gene duplicates after WGD and SSD across
the genome. However, the fundamental inadequacy of the linear BDP remains,
and plagues the interpretation of parameter estimates as rates of long-term
genome evolution.

The lack of fit of the linear BDP model has some repercussions for common
practices in evolutionary genomics which were not the focus of the present dis-
sertation. Indeed, the linear BDP model is ubiquitously used in model-based
approaches to study gene family expansion and contraction across phyloge-
nies, forming the basis of popular ML inference tools such as CAFE (De Bie
et al. 2006a), Count (Csűrös 2010) and BadiRate (Librado, Vieira, and Rozas
2012). Such analyses are often taken as providing a statistical foundation to
claims of adaptive evolution at the genomic level. Many studies have reported
‘significantly’ expanding or contracting gene families bymeans of an approach
which boils down to signaling gene families for which transitions between in-
ferred (ML) ancestral states are unlikely under the fitted linear BDP model,
usually without taking into account lineage or family-specific variation in evo-
lutionary rates. In other words, the most common use of these tools is to signal
lack of fit of a simple linear BDP model, but the causes of this lack of fit are
rarely, if ever, investigated. We showed that the linear BDP almost never pro-
vides an adequate fit to the data, so it would appear that these approaches are
really rejecting a strawman model. While this commonly adopted approach
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can signal interesting families, the claim that it provides ‘a statistical founda-
tion for evolutionary inferences’1 appears moot. Indeed, the mere fact that
some approach allows one to compute a p-value does not make that approach
statistically more sound than providing, for instance, a ranking of gene fam-
ilies based on some summary statistic of the phylogenetic profile matrix (an
approach which has also appeared from time to time in the literature). We
believe a lack of fit should prompt one to look for better models which can
accommodate the observed variation, in a similar way as we have for instance
accounted for WGD events.

Luckily, the approach is somewhat less precarious than the above may suggest,
because theML ancestral states are typically reasonably robust to model viola-
tions, although the computed 𝑝-values remain meaningless if the ‘null’ model
does not fit a single family. A worthwhile avenue for further research would
hence be to assess the robustness of evolutionary claims of ‘significant’ expan-
sion or contraction based on the linear BDP in the face of the pervasive model
violations we highlighted. We note that the approach for detecting gene family
expansion and contraction under the linear BDP really amounts to an approx-
imate form of posterior predictive model checking, relying on point estimates
(MLEs) instead of a posterior distribution over parameters and ancestral states.
In our view, the whole approach would benefit from a more explicit Bayesian
treatment, and in this work we provided the building blocks to do so. An in
depth study of how one could conduct a more meaningful statistical analysis
of gene family expansion and contraction using the linear phylogenetic BDP
in Bayesian hierarchical models is however deferred to future work.

But the problem is really with the linear BDP itself, and merely embedding
the linear BDP model in ever more complicated hierarchical models and so-
phisticated Bayesian analyses will not solve the issue. The fundamental issue
is that, while the linear BDP (or any other branching process) may appear a
reasonable model of the mutational process, it is not a suitable model for the
population genetic processes that determine the fate of gene duplication and
loss mutations, and hence the long-term evolution of the ‘bag of genes’. In
particular, the effect on fitness of degenerative mutations which lead to gene
loss will differ systematically depending on the number of genes in a fam-
ily, violating the independence assumptions that underpin the ubiquitously
used BDP models. We explored models which can account for this in sec. 3.3,
where we focused in particular on a two-type branching process model. While
this model is interesting both from a probabilistic and evolutionary biological

1See e.g. the CAFE 5 GitHub page: https://github.com/hahnlab/CAFE5 (last accessed: May
2022).
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perspective (as we argued in the relevant chapter), the gain in model fit was
not as great as we would have hoped, while the computational cost increased
markedly.

Given that we had to restrict analyses with the two-type model to relatively
small gene families andmodels which do not take into account variation across
lineages, it might be worthwhile to adopt a general BDPmodel instead. In par-
ticular, a simple model with 𝜆𝑖 = 𝑖𝜆 for 𝑖 > 0, 𝜇𝑖 = 𝑖𝜇 for 𝑖 > 1 and 𝜇1 < 𝜇 a
third parameter to be estimated from the data may already accommodate the
most serious violation of the linear BDP model. While this may seem like
only a minor modification of the linear BDP, the mathematical treatment is
vastly different (as far as we can tell) because of the lack of the branching
property. Calculation of transition probabilities would hence have to be per-
formed approximately using matrix exponentiation (as for the usual CTMC
models of sequence evolution) or the numerical techniques of Crawford and
Suchard (2012). While this would only address part of the issue (as we have
noted in sec. 3.3), if the main goal is to get rid of the model violations for the
linear BDP, this may be the most efficient strategy.

However, a more ambitious goal is to work out substantive models of evo-
lution, which are not merely tailored to yield good predictive performance,
but which involve stochastic processes that we consider adequate models of
the evolutionary processes of interest, and where we can ascribe meaningful
interpretations to key parameters in the context of a scientific theory. This
kind of desire has been expressed repeatedly in statistical evolutionary ge-
nomics (e.g. Szöllősi et al. 2015; Scornavacca, Delsuc, and Galtier 2020),
and demands, in particular, close attention to how we can link the microevo-
lutionary population genetic processes with the long-term phylogenetic time
scales. Important work in this regard is performed for models of sequence evo-
lution, we think for instance of mutation-selection models of codon evolution
(Rodrigue, Philippe, and Lartillot 2010; Rodrigue and Lartillot 2017; Latrille,
Lanore, and Lartillot 2021) or polymorphism-aware models of sequence evo-
lution (Wilson et al. 2011; De Maio, Schrempf, and Kosiol 2015; Borges,
Szöllősi, and Kosiol 2019), and indeed, much of the literature surrounding
the multispecies coalescent is somewhere between population genetics and
more long term evolutionary genomics (e.g. Hobolth et al. 2011). Strikingly,
virtually no such models have been developed for the processes of gene dupli-
cation and loss, which are clearly among the most important determinants of
long-term genome evolution. So far, little, if any, of the rather extensive pop-
ulation genetics theory on gene duplication and loss (e.g. Kimura and King
1979; Watterson 1983; Ohta 1987; Force et al. 1999; Walsh 2003), has found
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its way into evolutionary genomics. Our two-type branching process model
goes somewhat in that direction, but not nearly as far as we would like it to.

Additionally, when considering the population genetic processes that affect
genomic diversity, we find that the different sources of variation all arise in the
same ‘population genetic environment’ (Lynch 2007). This leads to all sorts
of correlations which could be taken up in statistical models. In particular, the
effects of population size on genetic drift affect newborn point mutations and
gene duplications in similar ways, so that rates of long-term sequence and gene
family evolution should be correlated. Devising models which can account
for and harness evolutionary correlations across these different phenotypes,
esentially bringing inmore explicitly quantitative genetics in our study of long-
term genome evolution, appears to be another promising avenue for further
research. Approaches like the one of Lartillot and Poujol (2011) or Lartillot
(2012) may serve as an inspiration in that regard.

7.1.2 Phylogenomic forestry

In the second part of this thesis we dipped a bit deeper in the bag, not only
considering gene family sizes, but also the evolutionary relationships among
gene family members, as represented by their gene tree. Many researchers
have sought to learn about genome evolution from gene trees, either for recon-
structing species trees or for inferring reconciled gene trees, which anchor the
evolution of a gene family within the phylogenetic context provided by the
species tree.

Modeling the collection of gene trees across the genome admits more detailed
inferences about the evolutionary processes that cause genomic variation, but
comes at a substantially increased computational cost. Indeed, while joint
Bayesian hierarchical models roughly of the form

𝑆 ∼ GenomeLevelModel (7.1)
𝑖|𝑆 ∼ GeneFamilyLevelModel 1 ≤ 𝑖 ≤ 𝑛 (7.2)
𝑦𝑖|𝑖 ∼ SequenceLevelModel 1 ≤ 𝑖 ≤ 𝑛 (7.3)

(where 𝑆, and 𝑦 represent the species tree, gene tree and sequence data re-
spectively) may be relatively easy to specify in theory, conducting inference in
reasonable time with reasonable resources turns out to be rather challenging.
With data sets of continuously increasing size, these approaches are infeasible
and unsustainable. Hence many people have sought to ‘shortcut’ inference for
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these models, essentially splitting the model in two independent components,
where gene trees are inferred from sequence data, and the gene trees are then
considered as data for studying the processes at the genome level.

However, learning from inferred trees asumed as data is, although widespread,
a statistically tricky business. Most approaches have relied on gene trees esti-
mated from sequence data using ML, treating these as if observed. Not only
are these estimators noisy due to errors in the alignment, model violations and
the use of heuristic optimization algorithms for inference, even if there were
no such sources of error, the inferred gene tree remains a statistical inference
with associated uncertainty. Ignoring this uncertainty is likely a major source
of issues for phylogenomic inference of species trees under the multispecies
coalecent model and phylogenomic reconciliation analyses. The former have
become a mainstay in large-scale phylogenetic studies, whereas the latter aim
to quantify the extent of gene duplication, gene loss and horizontal gene trans-
fer over long evolutionary time scales and are frequently used as a basis for,
again, claims of adaptive genome evolution and inference of ancient WGD
events.

In our work in chapters 4, 5 and 6 we adopted an intermediary viewpoint, re-
lying on a two step approach which breaks up of the hierarchical model of
eq. 7.3, while taking into account uncertainty in the gene trees. Our approach
hinged crucially on a class of distributions over tree topologies, the CCD, first
studied by Larget (2013) and here considered in some detail in chapter 4. In
chapter 5, we show how the CCD can be used for inference under the MSC
from uncertain gene tree topologies, using an approach based on likelihood-
free expectation propagation. Here, the CCD finds dual use: as an ABC kernel
on the one hand and as a variational family for the species tree posterior on the
other. Our usage of EP appears to be unique in the phylogenetic literature, and
while our method is still in a rather experimental stage, we believe it shows
the merits of this somewhat underappreciated (at least in genomics) approach
to Bayesian inference. As we noted in the discussion of the relevant chapter,
likelihood-free approaches are typically much more flexible when it comes to
inference, bypassing the need to implement efficient algorithms for evaluating
the typically computationally intensive or intractable likelihood function, fo-
cusing instead on the simulation of ‘fake data’ under the model. In that regard
we hope that our approach could enable inference for more adequate models of
genome evolution which have so far remained elusive. In addition, the shift of
focus from evaluating the likelihood, which is in itself a meaningless number,
to simulation of the data-generating process is interesting from a Bayesian per-
spective in that the assessment of model fit is to some extent taken up already
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during inference. Indeed, in contrast with typical likelihood-based methods,
which ‘fail silently’ as far as model fit is concerned, ABC methods can fail
rather loudly when the model does not fit the data. We made use of this fact
when we considered outlier loci in our analysis of the Chiari et al. (2012) data
set in chapter 5.

Our work in chapter 6 was mostly motivated by the problem of phylogenomic
inference of ancient WGDs, an important problem in plant evolutionary ge-
nomics which has received a lot of attention. The literature on the subject, as
we have noted, is characterized by an application of rather ad hoc methods,
and building on the work of Szöllősi, Rosikiewicz, et al. (2013) and Rabier,
Ta, and Ané (2014), we sought to develop a more principled approach based
on statistical reconciliation using phylogenetic BDP models. Of course, this
approach suffers from the same issues of model fit as our analyses of gene
counts under the phylogenetic linear BDP. However, as we showed using pos-
terior predictive simulations, this appears not to be an issue for inference of
the number of evolutionary events along different branches of the species tree
(this is similar to the robustness of inferred ancestral gene counts to model
violations noted above). Again, however, better substantive models of the
evolutionary process would be welcome and would likely benefit the infer-
ence of ancient WGDs. We noted, briefly, how the two-type process could be
implemented for the ALE-based statistical reconciliation approach, and this
appears to us as another fruitful avenue for further research. We note that this
need not be computationally prohibitive if one is willing to make certain ap-
proximations in the discretized ALE algorithm, for instance by approximating
the continuous-time two-type process by a discrete-time branching process.

Developing aproaches to take up branch length information in the methods
we presented in chapter 5 and chapter 6 should be a likely rewarding effort.
Indeed, it appears to us that the main disadvantage of our phylogenomic for-
est methods compared to the ‘full-Bayes’ approaches based on eq. 7.3 is their
inability to take up information from molecular divergence beyond the effect
the latter has on topological uncertainty. Our analysis of the Drosera data
in chapter 6 highlighted this. If we would be able to take up such informa-
tion in the analysis, this might further enable considerable improvements for
molecular divergence estimation from multi-copy gene families. Indeed, it
appears plausible to us that, if one could take into account molecular diver-
gence of the sequences in a gene family in genome-wide reconciliation analy-
ses along the lines of those we conducted in chapter 6, one could further push
the Bayesian hierarchical model to include unknown node ages in the species
tree. This seems, to us, an exciting area of further research, which would not
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only provide an interesting approach for inferring time-calibrated species trees,
but also would yield a statistically well-founded approach for dating ancient
WGDs. The latter is in turn vital for our assessment of the macroevolution-
ary importance of ancient WGDs (Van de Peer, Mizrachi, and Marchal 2017;
Clark and Donoghue 2018).

7.2 Beyond the bag

But really, our preoccupation with the ‘bag of genes’ model of a genome is
becoming increasingly unjustified. With the quality of genome assemblies for
non-model organisms now routinely becoming on a par with what used to be
the exceptional level of assembly contiguity of the human, mouse or Arabidop-
sis genomes; models of evolution which ignore the wealth of evolutionary in-
formation residing in genome structure appear increasingly ill-motivated. We
are of course not the first to lament this state of affairs, and similar sentiments
are expressed at regular intervals in the literature (e.g. Yang 2006; Szöllősi et
al. 2015; Scornavacca, Delsuc, and Galtier 2020). Devising tractable statis-
tical models at this level of organization is however notoriously complicated.
The key question here is: how can we conceptualize a genome in a way that
retains structural information, yet yields feasible modeling approaches?

The ‘gene list’ conception of a genome, already introduced in chapter 1, is one
strategy that is commonly taken as a starting point. At this level of abstrac-
tion, the problem is usually framed as the modeling of genome rearrange-
ment processes, which essentially consider models of evolution which can
turn one gene list into another by means of a set of admissible evolutionary
events (inversions, translocations, fusions, fissions, etc.) (Hannenhalli and
Pevzner 1995; Bafna and Pevzner 1996; Pevzner and Tesler 2003; Fertin et al.
2009). The combinatorial challenges associated with problems of this kind
have spawned an entire industry of computer scientists and mathematicians
working on algorithmic problems which are often rather remote from evolu-
tionary concerns. Statistical modeling of genome rearrangement processes
has not really taken off yet, with not much progress after several promising
early attempts (e.g. Larget, Kadane, and Simon 2002; York, Durrett, and
Nielsen 2002; Durrett, Nielsen, and York 2004; Miklós and Tannier 2010).
We here note the work of Nakatani and McLysaght (2017) and Nakatani et al.
(2021) which describes a Bayesian approach towards ancestral genome recon-
struction that may open up new opportunities for modeling genome evolution
at a coarse scale. Such macrosynteny approaches, on which we are presently
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working, currently serve mainly to delineate genomic homology on a large
scale (fig. 5.12 provides an illustration of our results in that regard). However,
the foundation of these methods in relatively simple parametric models may
enable their embedding in a more explicit phylogenetic context and the in-
corporation of more substantive modeling assumptions regarding large-scale
genome evolution. Whether this is indeed the case remains an open question
at this point.

However, we have not, usually, modeled a collection of sequences or a bag of
genes an sich, and have additionally relied on rather strong assumptions of ho-
mology to do so. Indeed, nothing remains of our approaches if we do not have
orthogroups and multiple sequence alignments, although both are rather ques-
tionable constructs. Even if we would have methods that succeed with high
accuracy in uncovering such homology relationships among sites and genes,
many aspects of actual evolutionary processes are bracketed when making the
assumption that we can in fact atomize genes and sequences in the way we do.
For instance, a typical protein-coding gene consists of multiple protein do-
mains, which may have quite different evolutionary histories, something we
have glossed over completely. Sequences evolve not only by point mutations,
but also by insertions, deletions, gene conversion etc., all of which trouble the
assertion of homology relationships in the form of an alignment matrix and
are ignored in typical phylogenetic analyses using CTMCmodels of sequence
evolution. Nevertheless, a rich literature and wealth of methods has emerged
from these seemingly precarious foundations, and they continue to help us in
making sense of (molecular) evolution at the sequence and genome scale, as
we have had ample opportunity to show in this thesis.

By analogy, then, another question appears: how can we ‘atomize’ a genome,
conceived as a gene list (or collection of such lists), in a way which retains
structural information, but does allow us to devise tractable models? The
relevant homology concepts that can be defined for this representation of a
genome are synteny (roughly, conserved gene content) and colinearity (con-
served gene order). We have ourselves used the latter to peak a little bit beyond
the bag in our work, using information from synteny and colinearity analyses
in both chapter 5 and 6 to select interesting subsets of gene families. However,
we have not taken up this information in any way in the probabilistic models
of evolution that are at the core of our statistical inferences. Several poten-
tially rewarding avenues for further research appear to us in this regard. We
noted, for instance, in chapter 3 that modeling gene counts may not be a very
data-efficient way for inferring ancient WGDs in a phylogenetic context, espe-
cially with increasing availability of high-quality chromosome-scale genome



264

assemblies. However, nothing prevents us from applying similar models to
more rich data, such as for instance phylogenetic profiles of anchor families
(e.g. Zhao et al. 2021, see also chapter 6). This could, finally, provide us a
robust yet reasonable simple statistical method for the inference of ancient
WGDs in a phylogenetic context. Indeed, we conjecture that an approach
based on a BDP-like model for anchor families, together with something like
the rjMCMC strategy to sample across the space of possible WGD hypothe-
ses (like the one we developed in Zwaenepoel and Van de Peer (2020) and
chapter 3) could solve many of the issues of statistical WGD inference. Sim-
ilarly, incorporating synteny or colinearity information in gene tree reconcili-
ation, for instance by modeling microsynteny networks in the sense of Zhao
and Schranz (2019), could yield interesting methods for species tree inference,
WGD inference and studying rates of genome structure evolution. Duchemin
et al. (2017) is a noteworthy example of an attempt to do so, although not
using probabilistic models of evolution nor statistical inference.

7.3 Epilogue

So what good are all these models and methods? Do they help us to make evo-
lutionary sense of genomic data? Do they enable a better understanding of
genome evolution? Do they actually help us to prevent falling for the just-so
stories of Gould (1978)? For one thing, the naturalist’s eye is lost in the face
of large genomic data sets, and we need models at least as probes to interpret
these data in an evolutionary context. Indeed a model is like an arrow which
we can throw at empirical data to get something out of the latter. Hence, what
we see is what the model allows us to see. Without models, there is not much
to be seen, and without statistical models, what we see is challenging to in-
terpret. In this regard, statistical evolutionary genomics is already a highly
succesful endeavor, and essential to our current approaches for understanding
genomic diversity. However, at present, we remain stuck in a rather high-level
discourse, talking about genome-wide and long-term rates of evolution, pat-
terns of lineage and family variation, inferring phylogenies at various scales
etc., but rarely come to the point of what many a biologist would recognize as
an evolutionary explanation of some biological phenomenon. Without much
knowledge about what all these genes and genomes are supposed to mean for
the development and maintainance of a living system, however, evolutionary
inferences at this level of detail remain out of scope. Unraveling all these
functional questions is however, in our view, hardly the task of evolutionary
biology. Nevertheless, our high-level evolutionary inferences (and particu-
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lar evolutionary reconstructions) may be helpful in constructing hypotheses
concerning functional aspects and the evolutionary constraints they engender,
which may in turn lead to more substantive and detailed evolutionary hypothe-
ses. Whenever such evolutionary hypotheses are championed, one should seek
to test them, and this is the task of evolutionary biology. Devising models and
confronting themwith data is then, oncemore, the ‘right thing’ to do. We hope
to have made some contribution to our means to do so.
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Give any one thought a push:
it falls down easily;

but the pusher and the pushed produce
that entertainment called a discussion.

Shall we have one later?

John Cage – Lecture on Nothing
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A Bayesian computation

Many applications of Bayesian statistical methods lead to serious computa-
tional challenges. Once a suitable probability model has been determined, the
objective of a Bayesian analysis is usually to arrive at some Bayes estimator
�̂� for an unknown quantity 𝜃 of interest, having the following general form

�̂� = argmin�̂�𝔼[𝐿(𝜃, �̂�)|𝑦] (A.1)

Where 𝐿 is a suitable loss function and 𝑦 is the observed data (Robert 2007;
Bernardo and Smith 2009). For general 𝐿, we will not have a closed form
for (A.1), nor for the expectation in it, and simple algorithms like numerical
quadrature are only feasible for low-dimensional 𝜃. Numerical approxima-
tion of challenging high-dimensional integrals is therefore a routine task in
Bayesian inference, and a whole battery of algorithms has been developed
to this end. It is no exaggeration to say that we owe the revival of Bayesian
statistics in the present century largely to the availability of efficient general
purpose algorithms and increased computational power. Problems in phylo-
genetics and evolutionary genomics are among those presenting serious com-
putational challenges, and we use a number of different methods for approx-
imating posterior distributions in this thesis. This chapter provides a brief
overview of some of the relevant methods.

A.1 Monte Carlo integration and sampling

Let 𝑋∶ Ω → ℝ be a random variable with distribution function 𝜇 and let ℎ
be a measurable function, then we can approximate the integral (provided it



268

exists)

𝔼𝜇[ℎ] = ∫
∞

−∞
ℎ(𝑥)𝜇(𝑑𝑥) ≈ 1

𝑁

𝑁∑
𝑖=1

ℎ(𝑋𝑖) where 𝑋𝑖 ∼ 𝜇

Here (𝑋1, 𝑋2,… , 𝑋𝑛) constitutes a sample from the density 𝜇. By the strong
law of large numbers the Monte Carlo approximation converges almost surely
to the expectation. If we can therefore simulate random draws from the density
𝜇, we can use these simulations to estimate intractable integrals. Note that the
same idea can be used to approximate the probability density function (pdf)
of 𝜇 using simulation. Specifically, using an iid sample (𝑋1,… , 𝑋𝑛) from 𝜇,
we can approximate the pdf by the (random) empirical measure

�̂�(𝑥) = 1
𝑁

𝑁∑
𝑖=1

𝛿𝑋𝑖
(𝑥)

where 𝛿𝑥(⋅) is the Dirac mass at 𝑥. Seen in this light, the Monte Carlo approx-
imation of 𝔼𝜇[ℎ] is equivalent to 𝔼𝜇[ℎ] ≈ 𝔼�̂�[ℎ]. The conclusion is the same:
the problem of integration has been recast as a problem of simulation.

For general probability measures 𝜇, simulating random draws is itself how-
ever a challenging task, and we have to take recourse to sampling algorithms
which can be used to simulate from arbitrary densities. The goal of a sam-
pling algorithm is to generate random realizations from a prescribed proba-
bility distribution 𝜇(𝑥) (the target) using random numbers1 from probability
distributions which admit direct simulation (i.e. the uniform distribution and
those distributions that can be related to it in a relatively simple way, using
for instance the inverse transform method, see e.g. Devroye (2006)). The rest
of this chapter will be a brief exposition of the main sampling algorithms that
are used in the context of this thesis. We will specialize the discussion to
the Bayesian setting, where the aim is to sample from a target distribution
𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃), where 𝜃 ∈ Θ. Note that the marginal likelihood 𝑝(𝑦) is
in general an unknown normalizing constant, so that the goal is to simulate
from 𝑝(𝜃|𝑦) assuming only the possibility to evaluate the unnormalized target
distribution 𝜋(𝜃) = 𝑝(𝑦|𝜃)𝑝(𝜃). We will also consider the so-called likelihood-

1One might object that we only have pseudo-random number generators at our disposal, such
as the Mersenne twister algorithm. These algorithms generate a deterministic sequence of bit-
strings with certain statistical properties that render it indistinguishable from a sequence of ran-
dom points from Lebesgue measure on [0, 1]. I am however reluctant to ascribe meaning to the
notion of pseudo-randomness, for it is unclear to me what true randomness would be. Pseudo-
uniform I may find acceptable.
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free2 setting where we seek to sample from a posterior density 𝜋(𝜃) without
having to evaluate 𝑝(𝑦|𝜃). Many good resources on the topic of simulation
and computational methods for Bayesian inference exist, of which we name
Robert and Casella (1999), MacKay (2003), Gelman et al. (2013) and Sisson,
Fan, and Beaumont (2018).

A.2 Rejection sampling

Two relatively straightforward methods for sampling from an arbitrary target
are rejection sampling and importance sampling. While these are typically
not sufficiently efficient for high-dimensional spaces, they assume an impor-
tant role in the context of likelihood-free approximate Bayesian computation
(ABC) algorithms, among which those ABC algorithms developed in this the-
sis. We shall briefly describe both in this and the following section.

The basic idea of rejection sampling, also called the ‘accept-reject’ algorithm,
is that when 𝑋 ∼ 𝑓 (𝑥) and 𝑈 ∼ Uniform(0, 1), the joint distribution of the
pair (𝑋,𝑈𝑓 (𝑋)) ∼ Uniform(𝐴), where

𝐴 = {(𝑥, 𝑢) ∶ 0 < 𝑢 < 𝑓 (𝑥), 𝑥 ∈ dom𝑓}

This can be seen by considering

𝑋 ∼ 𝑓𝑋(𝑥)
𝑈 |𝑋 ∼ Uniform(0, 𝑓𝑋(𝑋))

So that the joint density 𝑓𝑋,𝑈 (𝑥, 𝑢) = 𝑓𝑈 |𝑋(𝑢|𝑥)𝑓𝑋(𝑥) = 1
𝑓 (𝑥)𝑓 (𝑥) = 1

for 0 < 𝑢 < 𝑓 (𝑥). Hence, if we can simulate pairs from Uniform(𝐴) and
marginalize over 𝑈 , we obtain a sample from 𝑓 . Now this appears quite use-
less, since we cannot easily simulate uniformly from the set 𝐴 without being
able to simulate from the density 𝑓 of interest in the first place. Nevertheless,
this result has been considered important enough to be called the ‘fundamental
theorem of simulation’ (Robert and Casella 1999).

The reason this does lead to a viable strategy is that we can usually simulate
iid pairs 𝑌 = {𝑌1,… , 𝑌𝑛} uniformly from some set 𝐴′ such that 𝐴 ⊆ 𝐴′,

2This is somewhat of a misnomer, since in no way can we actually bypass the likelihood or
the likelihood principle that is at the core of Bayesian statistics. We merely assume the likelihood
function to be intractable or computationally expensive to evaluate.
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and that 𝑌 ∩ 𝐴 will then be an iid sample uniformly distributed on 𝐴 (De-
vroye 2006, theorem 3.2). To obtain an iid sample from 𝑓 (𝑥) using this idea,
the usual strategy is to select a sampling density 𝑔(𝑥) which admits simula-
tion by direct methods (the instrumental density) and a constant 𝑀 such that
𝑀𝑔(𝑥) > 𝑓 (𝑥). With such a 𝑔(𝑥) and 𝑀 available, it is straightforward to
sample pairs uniformly from a set𝐴′ for which𝐴 ⊆ 𝐴′ by using the following
sampling scheme:

𝑋 ∼ 𝑔(𝑥)
𝑈 |𝑋 ∼ Uniform(0,𝑀𝑔(𝑋))

Upon obtaining a size 𝑚 iid sample of (𝑋𝑖, 𝑈𝑖) pairs, the set {𝑋𝑖∶ 𝑈𝑖 <
𝑓 (𝑋𝑖), 1 ≤ 𝑖 ≤ 𝑚} will constitute an iid sample of random size from 𝑓 . Note
that this approach will work equally well when 𝑓 is an unnormalized density
as long as the condition𝑀𝑔(𝑥) > 𝑓 (𝑥) is satified. One can show that the num-
ber of (𝑋,𝑈 ) pairs needed to simulate one realization of 𝑍−1𝑓 (𝑥), where 𝑍
is a normalizing constant, has a geometric distribution with mean 𝑍∕𝑀 , so
the smaller 𝑀 the more efficient the algorithm. Specializing to the Bayesian
setting, we see that to simulate a single draw from 𝑝(𝜃|𝑦) using rejection sam-
pling, we simulate a realization 𝜃 from another density 𝑔 which dominates
𝑝(𝜃|𝑦) and accept 𝜃 as a draw from the target with probability

𝑝𝑎(𝜃) =
𝜋(𝜃)

𝑀𝑔(𝜃)

where 𝑀 is an upper bound on the density ratio 𝜋(𝜃)∕𝑔(𝜃). If we consider
using the prior as sampling density, we see that 𝑝𝑎 ∝ 𝑝(𝑦|𝜃), and that 𝑀 ≥
max𝜃 𝑝(𝑦|𝜃).
A.3 Importance sampling

The key observation leading to the idea of importance sampling is that the
same integral can be expressedwith respect to differentmeasures. Specifically,
if 𝑔 is absolutely continuous with respect to 𝑓 , we have the following identity

𝔼[ℎ(𝑋)] = ∫ ℎ(𝑥)𝑓 (𝑥)𝑑𝑥 = ∫ ℎ(𝑥)
𝑓 (𝑥)
𝑔(𝑥)

𝑔(𝑥)𝑑𝑥

While apparently trivial as a statement about integrals, from the probabilistic
perspective this is an important realization, since a random variable with den-
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sity 𝑔 may have very different properties compared to a random variable dis-
tributed according to 𝑓 (for instance, 𝑔 may admit efficient simulation, when
𝑓 does not). The quantity𝑤(𝑥) = 𝑓 (𝑥)∕𝑔(𝑥) is called the (normalized) impor-
tance weight. The importance sampling Monte Carlo approximation is then

𝔼[ℎ] ≈ 1
𝑁

𝑁∑
𝑖=1

𝑓 (𝑋𝑖)
𝑔(𝑋𝑖)

ℎ(𝑋𝑖) where 𝑋𝑖 ∼ 𝑔

We can use importance sampling in the setting where the target density is
known up to a normalizing constant. Consider again the Bayesian setting
where we want to approximate 𝔼[ℎ(𝜃)|𝑦], we have

𝔼[ℎ(𝜃)|𝑦] = ∫Θ ℎ(𝜃)𝑝(𝜃|𝑦)𝑑𝜃 = 1
𝑝(𝑦) ∫Θ ℎ(𝜃)

𝑝(𝑦, 𝜃)
𝑔(𝜃)

𝑔(𝜃)𝑑𝜃

≈ 1
𝑁𝑝(𝑦)

𝑁∑
𝑖=1

ℎ(𝜃𝑖)𝑤(𝜃𝑖) (A.2)

where (𝜃1, 𝜃2,… , 𝜃𝑁 ) is an iid sample from density 𝑔(⋅). Now, from the above,
it follows that

𝑝(𝑦) = ∫Θ 𝑝(𝑦, 𝜃)𝑑𝜃 ≈ 1
𝑁

𝑁∑
𝑖=1

𝑤(𝜃𝑖)

Plugging this in eq. A.2, we get

𝔼[ℎ(𝜃)|𝑦] ≈ 𝑁∑
𝑖=1

ℎ(𝜃𝑖)
𝑤(𝜃𝑖)∑𝑁
𝑖=1𝑤(𝜃𝑖)

∶=
𝑁∑
𝑖=1

ℎ(𝜃𝑖)𝑊 (𝜃𝑖)

Where 𝑊 (𝜃𝑖) are the self-normalized importance weights. Clearly, to com-
pute the 𝑊 (𝜃), we only need to evaluate the target up to a constant. We can
obtain expectations with respect to a posterior distribution and get an estimate
of the marginal likelihood 𝑝(𝑦) using this strategy, the latter being very useful
in the context of Bayesian model selection.

The efficiency of an importance sampling algorithm is determined by the vari-
ation of the importance weights. If the 𝑊 (𝜃𝑖) vary wildly, with many having
very small values ≈ 0 and some 𝑊 (𝜃𝑖) rather large, the resulting importance
sampling estimate will be dominated by the small number of samples with
large weights, and the resulting estimator will have a high variance. When
𝑔(𝜃) ∝ 𝑝(𝜃|𝑦), we see that𝑊 (𝜃𝑖) ∝ 1, so that each sample contributes equally
to the computed expected value. To measure the deviation from this ideal situ-
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ation, one can use the so-called effective sample size3 (ESS) (Kong 1992; Liu
2001)

ESS =
( 𝑁∑

𝑖=1
𝑊 (𝜃𝑖)2

)−1

which provides a crude estimate of the number of equally weighted samples
to which our actual sample is equivalent. A number of methods are available
for reducing the variance of the importance weights and stabilizing impor-
tance sampling estimators. An interesting example, which also provides other
diagnostic tools than the ESS, is the Pareto-smoothed importance sampling
method of Vehtari et al. (2015).

Importance sampling constitutes the basis of a number of more involved meth-
ods for sampling from complicated target distributions, such as sequential im-
portance sampling (SIS) (Liu, Chen, and Wong 1998) and sequential Monte
Carlo (SMC) (Doucet, Freitas, and Gordon 2001) methods. The latter are
sometimes referred to as particle filters, as we can view these as propagating
a set of 𝑁 ‘particles’, {(𝜃1, 𝑤1),…(𝜃𝑁 , 𝑤𝑁 )}, which are propagated through
a series of reweighting, resampling and perturbation steps so that they eventu-
ally provide a high-quality sample from the target. The essential idea behind
these methods is that, while it is often difficult to design a good importance
sampling density which is reasonably well aligned with the target, it is of-
ten feasible to learn such a sampling density algorithmically. We shall not
discuss these methods here in detail, referring to e.g. Doucet, Johansen, and
others (2009) for a well-known treatment of such methods.

A.4 Markov chain Monte Carlo

In 1953, at the (in)famous Los Alamos national labaratory, Metropolis et al.
invented an exceptionally powerful method to simulate the equilibrium dy-
namics of a complicated system arising in statistical mechanics, without hav-
ing to simulate the actual many-particle dynamical system (Metropolis et al.
1953). Instead, the authors simulated a much simpler ergodic Markov chain,
with a stationary distribution provably equivalent to the equilibrium distribu-
tion of their system of interest. The method, and its generalization by Hast-

3Note that the ESS is a rather general concept, and much like other ‘effective sizes’ (e.g. effec-
tive population size in population genetics, effective number of loci in quantitative genetics, etc.)
can be defined in multiple ways. In particular, the ESS in the context of Markov chain Monte
Carlo has more or less the same meaning, but a very different mathematical definition.
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ings (1970), was heavily used in statistical physics and chemistry, but was
only gradually realized to be of much wider significance in statistics in gen-
eral (Gelfand and Smith 1990; Geyer 2011; Robert and Casella 2011). The
general method of sampling from an arbitrary target distribution by simulat-
ing an ergodic Markov chain with the desired target as stationary distribution
came to be known as Markov chain Monte Carlo (MCMC), and is the single
most important methodological advance at the root of the revival of Bayesian
methods in statistics. Indeed, one author goes as far as to claim that:

“Whatever the philosophical analysis that leads you to conclude that a
particular statistical procedure is ‘the Right Thing’4, that is what you
must do, because some form of MCMCwill enable you to do it.” (Geyer
1998)

The Metropolis-Hastings (MH) algorithm has been further generalized by
Green (1995), and forms the basis for the extremely powerful Hamiltonian
Monte Carlo (HMC) algorithms (such as the “no U-turn sampling” (NUTS)
algorithm of Hoffman and Gelman (2014)). In this section we briefly
recapitulate the principle behind MCMC methods and provide a quick sketch
of the main methods used in this thesis.

A.4.1 The Metropolis-Hastings algorithm

Assume we wish to sample from a target distribution 𝜋, on a probability space
( , ,ℙ). As already indicated, the basic idea of MCMC is to simulate a
Markov chain (𝑋1, 𝑋2,…) which has 𝜋 as stationary distribution. To do so,
we shall devise a Markov proposal kernel 𝑃 , defined as

𝑃 (𝑥,𝐴) = ℙ{𝑋𝑛 ∈ 𝐴|𝑋𝑛−1 = 𝑥} 𝐴 ∈ 
which preserves 𝜋, that is, for which

𝜋(𝐴) = ∫ 𝑃 (𝑥,𝐴)𝜋(𝑑𝑥) (A.3)

The strength of MCMC methods lies in the fact that there exist generic strate-
gies to design such proposal kernels. One such strategy is the Metropolis-
Hastings update, which works for any distribution 𝜋 for which we can eval-

4“That which is compellingly the correct or appropriate thing to use, do, say, etc. Often
capitalized, always emphasized in speech as though capitalized. Use of this term often implies
that in fact reasonable people may disagree.” (The Jargon file, v4.4.7).
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uate its density up to a normalizing constant. Suppose the Markov chain is
at iteration 𝑛 in state 𝑋𝑛 = 𝑥. The Metropolis-Hastings update makes use of
two steps to provide a Markovian transition which generates 𝑋𝑛+1 while pre-
serving the target density: (1) a proposal step and (2) an accept-reject step. In
the proposal step, we use a proposal distribution 𝑞, which may or may not be
dependent on the present state 𝑥, to obtain a new value of the state 𝑥′, i.e. we
sample

𝑥′ ∼ 𝑞(⋅|𝑥)
Next, we compute the acceptance probability for the proposal

𝑎(𝑥′, 𝑥) = min
(
1,

𝜋(𝑥′)𝑞(𝑥|𝑥′)
𝜋(𝑥′)𝑞(𝑥′|𝑥)

)
and we set the state of the chain at the next iteration as

𝑋𝑛+1 =

{
𝑥′ with probability 𝑎(𝑥′, 𝑥)
𝑥 else

If we run such a simulation long enough, starting from a suitable point 𝑋0
in the state space, we will generate a sample (𝑋1, 𝑋2,… , 𝑋𝑁 ) which is dis-
tributed according to the target density 𝜋. The probability of an accepted
proposal is

𝑝𝑎(𝑥) = ∫ 𝑎(𝑥′, 𝑥)𝑞(𝑥′|𝑥)𝑑𝑥′
So that we can express the Markov kernel as

𝑃 (𝑥,𝐴) = (1 − 𝑝𝑎(𝑥))𝟙𝐴(𝑥) + ∫𝐴 𝑎(𝑥′, 𝑥)𝑞(𝑥′|𝑥)𝑑𝑥′
for which it is not hard to show that it satisfies eq. A.3, (Geyer 1998).

To make this more concrete, consider the very simple one-dimensional prob-
lem we have dealt with in chapter 1, i.e. the estimation of the distance param-
eter 𝜃 for the Jukes & Cantor (JC) model. For a simple symmetric proposal
kernel 𝑞 (e.g. a Gaussian or uniform distribution with mean 0), the following
bit of code implements the MH transition kernel for an unnormalized target
𝜋(𝜃):
function mhstep(θ, p, q, π)

θ_ = θ + rand(q) # propose change to θ
p_ = π(θ_) # evaluate target at θ_
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Figure A.1: Trace plots and posterior histograms for the random walk MH algorithm
with different standard deviations 𝜎 of the proposal kernel, applied to the problem of
estimating the distance 𝜃 under the Jukes-Cantor model for a pairwise alignment of
𝑁 = 50 sites with 𝑘 = 15 observed differences (see chapter 1). The rightmost plot
is the result of automated tuning of the proposal standard deviation using the adaptive
MCMC method of Roberts and Rosenthal (2009).

# accept/reject
return ifelse(p_ - p > log(rand()), (θ_, p_), (θ, p))

end

Given a suitable initial state (𝜃, 𝜋(𝜃)), iterating this simple function will sim-
ulate a Markov chain with as stationary distribution the target 𝜋. In fig. A.1
we show such simulated Markov chains for Gaussian proposal kernels with
different settings for the standard deviation 𝜎 of the proposal kernel. Clearly,
the choice of the proposal kernel has a considerable influence on the efficieny
of the sampler. Choosing too large a 𝜎 will result in a very low acceptance
probability in the accept/reject step of the algorithm, and hence an inefficient
sampling algorithm. Choosing too small a 𝜎 on the other hand leads to a
very high acceptance probability, but the resulting chain will explore the high
probability region of the target very slowly.

Theoretical results show that in a one-dimensional context, a proposal kernel
with an acceptance probability of about 0.44 often will lead to an optimal ex-
ploration of the space. In order to select a proposal kernel for MH updates
with such an acceptance probability, one can automatically tune the scale of
the kernel during the sampling algorithm, if one ensures that the resulting
Markov chain still has the desired stationary distribution. Roberts and Rosen-
thal (2009) describe several strategies for constructing adaptive MCMC sam-
plers using such variants of the MH algorithm. The rightmost plot in fig. A.1
shows the trace of a Markov chain simulated using the MH algorithm with au-
tomatic tuning of the standard deviation 𝜎 of the Gaussian kernel. Methods for
automatic tuning of multivariate proposal kernels have also been developed.

The MH algorithm, in particular its adaptive variant, is quite efficient for sam-
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pling from low-dimensional target distributions. For high-dimensional target
distributions, one can use such simple MH proposal kernels compositionally
by sampling from the conditional distributions. Specifically, consider for in-
stance a target posterior density 𝑝(𝜃|𝑦), where 𝜃 = (𝜃1, 𝜃2,… , 𝜃𝑛) ∈ ℝ𝑛, one
can construct MH proposal kernels for each conditional posterior distribution,
and sample, for 𝑖 = 1,… , 𝑛, 𝜃𝑖 using the MH kernel according to

𝜃𝑖|𝜃−𝑖 ∼ 𝑝(𝜃𝑖|𝜃−𝑖, 𝑦)
where 𝜃−𝑖 = (𝜃1,… , 𝜃𝑖−1, 𝜃𝑖+1,… , 𝜃𝑛). This is sometimes called a
Metropolis-within-Gibbs (MWG) algorithm. Formally, however, it is a
special case of the MH algorithm, but one with a rather complicated Markov
kernel (Geyer 1998).

A.4.2 Hamiltonian Monte Carlo

When the target distribution is differentiable, samplers which make use of the
geometry of the target distribution can be used. Such samplers use information
from the gradient of the target to enable extremely efficient exploration of
the regions of high density (the ‘typical set’ in information theoretic jargon).
The Hamiltonian Monte Carlo (HMC) algorithm is the prime example of this
class of methods. We will very briefly discuss the principle behind HMC
here, and refer the reader to MacKay (2003), Neal (2011) and the pedagogical
exposition in Betancourt (2017) for more information.

HMC, also originally a simulation algorithm for particle systems in physics,
can be used to sample from target densities 𝜋(𝜃)where 𝜃 ∈ ℝ𝑛. The algorithm
is essentially a MH algorithm which uses a particularly efficient proposal ker-
nel that reduces the random walk behavior of standard MH algorithms. To
construct the HMC proposal kernel, we associate with each 𝜃𝑖 an auxiliary
momentum parameter 𝜙𝑖, so that we transform our 𝑛 dimensional parameter
space in a 2𝑛 dimensional phase space. We then choose a joint probability
distribution on the latter which factors as

𝜋(𝜃, 𝜙) = 𝜋(𝜙|𝜃)𝜋(𝜃)
so that ∫ 𝜋(𝜃, 𝜙)𝑑𝜙 = 𝜋(𝜃) is the target from which we wish to sample. Let
us now write

𝜋(𝜃, 𝜙) ∝ exp(−𝐻(𝜃, 𝜙))
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with
𝐻(𝜃, 𝜙) = − log𝜋(𝜙|𝜃) − log𝜋(𝜃)

which we can rewrite suggestively as

𝐻(𝜃, 𝜙) = 𝐾(𝜙, 𝜃) + 𝑉 (𝜃)

which a physicist will recognize as a Hamiltonian for a system with poten-
tial energy 𝑉 (𝜃) and kinetic energy 𝐾(𝜙, 𝜃). Having identified the correspon-
dence of our joint density on phase space with a classical physical system, we
can use theory form classical mechanics to help us devise an efficient proposal
kernel. In particular, we can make use of conservative Hamiltonian dynamics
to simulate trajectories through phase space which conserve the total energy.
That is, we can simulate trajectories according to Hamilton’s equations

𝑑𝜙
𝑑𝑡

=
𝜕𝐾(𝜙, 𝜃)

𝜕𝜙
𝑑𝜃
𝑑𝑡

= −
𝜕𝐾(𝜙, 𝜃)

𝜕𝜃
− 𝜕𝑉 (𝜃)

𝜕𝜃

Where we see the gradient of the target distribution appearing in the potential
energy term. The basic idea is then the following: if we manage to start from a
point sampled from the joint density over momentum and parameter variables,
we can simulate the conservative Hamiltonian dynamics for some time, ending
up in a point with the same density under the joint distribution on phase space.
Because of the way the joint density factors, we can then marginalize out the
momentum variable to obtain a sample from our target of interest.

The MCMC algorithm will then iterate the following three steps:

1. sample 𝜙|𝜃
2. simulate Hamiltonian dynamics to arrive at (𝜙′, 𝜃′)
3. accept/reject (𝜙′, 𝜃′) using the MH acceptance probability

The technical details of HMC involve the choice of the kinetic energy term
𝜋(𝜙|𝜃) and the specifics of how we simulate the Hamiltonian trajectories. We
will not dwell on these here and point the reader to the already suggested ref-
erences. Importantly, HMC does not rely (exclusively) on a random walk to
sample from the target density, and instead can make, if suitably parameter-
ized, big steps in the target space, reducing the autocorrelation in the simulated
Markov chain considerably. An important limitation of HMC methods is that
they are only defined for target densities with as domainℝ𝑛, so that we cannot
use HMC to sample from discrete probability spaces, such as, for instance,
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the space of phylogenetic trees on a given leaf set. Note that we did not have
such a restriction on the domain of the target density in the MH algorithm dis-
cussed above, which can equally well be applied to discrete spaces. Another
restriction is of course that we need to be able to compute the gradient of the
target density. Powerful automatic differentiation methods make differentia-
bility however less of an issue than it used to be.

A.5 Approximate Bayesian computation

Approximate Bayesian computation (ABC) is an umbrella term for a number
of methods for approximating posterior distributions and expectations without
evaluating the likelihood function 𝑝(𝑦|𝜃). For this reason, these methods are
referred to as likelihood-freemethods for Bayesian inference. Historically, the
development of these approaches was largely motivated by the complicated
problems which arise in evolutionary genetics, where evaluating the sampling
distribution is often computationally intractable (Tavaré 2018), but simulation
from the sampling distribution is very efficient.

The basic, and very intuitive, idea behind likelihood-free methods for
Bayesian inference is that, to infer the likely value for a parameter 𝜃 given
some data set 𝑦, we can (1) simulate parameter values 𝜃1,… , 𝜃𝑚 from some
density 𝑔 (for instance the prior), (2) simulate pseudo-data �̃� from 𝑝(𝑦|𝜃𝑖),
and (3) compare the pseudo-data to the actually observed data. Those 𝜃𝑖 for
which the pseudo-data is sufficiently similar to the actually observed data
should then provide an idea of the posterior 𝑝(𝜃|𝑦).
It is this simple idea for the approximation of the posterior which is formalized
in ABC methods. Consider first the above scheme, but where we sample 𝜃𝑖
from the prior, and accept the simulated pseudo-data �̃� ∈  if it matches the
observed data exactly. Clearly, this approach simulates samples from 𝑝(𝜃|𝑦)
exactly, using the following characterization of the latter

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) = ∫ 𝛿𝑦(�̃�)𝑝(�̃�|𝜃)𝑝(𝜃)𝑑�̃�
Of course, this is quite useless if the space of possible data  is continuous or
some large finite set, as we will never simulate the observed 𝑦 exactly, or do
so with very small probability. In general, an ABC approach addresses this
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issue by sampling instead from an approximation of the posterior

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) ≈ ∫ 𝜉(𝑦, �̃�)𝑝(�̃�|𝜃)𝑝(𝜃)𝑑�̃�
Where 0 ≤ 𝜉(𝑦, �̃�) ≤ 1, and 𝜉(𝑦, �̃�) = 1 whenever 𝑦 = �̃�. Here the kernel func-
tion 𝜉 introduces a certain tolerance window: instead of accepting only simu-
lations which match the observed data, we shall accept simulations which are
sufficiently similar. Concretely, the basic ABC rejection algorithm, using the
prior as sampling density, reduces to the following scheme: for 𝑖 = 1,… , 𝑚

1. simulate 𝜃𝑖 ∼ 𝑝(𝜃)
2. simulate �̃�𝑖 ∼ 𝑝(�̃�|𝜃)
3. accept 𝜃𝑖 with probability 𝜉(𝑦, �̃�𝑖), if not accepted return to (1)

The resulting sample (𝜃1,… 𝜃𝑚) will be sampled approximately from 𝑝(𝜃|𝑦),
with the quality of the approximation determined by 𝜉. Note that if 𝜉 is inter-
preted as a density for a measurement error model, the ABC approach can be
viewed as an exact approach under the joint model which combines the prior,
sampling distribution and error distribution (Wilkinson 2013). Lastly, note
that we can use other sampling densities 𝑔 for 𝜃 instead of the prior in step (1),
in which case we need to correct the acceptance probability by an importance
weight factor 𝑝(𝜃𝑖)∕𝑔(𝜃𝑖).

For 𝑦 ∈ ℝ𝑛, one typically uses some smoothing kernel function 𝐾ℎ(‖𝑦 − �̃�‖),
i.e. a symmetric probability density function with mean 0 and finite variance.
A common example in ABC is the uniform kernel, where 𝐾ℎ(‖𝑦 − �̃�‖) =
𝟙
[‖𝑦 − �̃�‖ ≤ ℎ

]
. When using such a kernel function, it is clear that as ℎ→0,

𝐾ℎ(‖𝑦− �̃�‖)→𝛿�̃�(𝑦), so that the ABC approximation to the posterior becomes
more and more accurate, at the expense of requiring more simulations. The
kernel is hence a first source of approximation in ABC. Another source of
approximation stems from the use of (insufficient) summary statistics as sub-
stitutes for the data 𝑦. Indeed, because the actual data 𝑦 is typically of rather
high-dimension, devising an efficient kernel function can be very hard, and as
a result, one often relies on a low-dimensional representation of the data, re-
placing 𝑦 by a set of suitably chosen summary statistics 𝑠(𝑦). This introduces a
second level of approximation in ABC applications, in that the approximation
quality is dependent on the degree to which the chosen statistics are sufficient
for themodel. Our applications in the present work are however rather atypical
ABC approaches in that we do not rely on summary statistics nor on smooth-
ing kernel function on a real-valued domain. We will hence not discuss the
various complications that arise when choosing suitable kernels and summary
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statistics, referring the reader to the recent volume edited by Sisson, Fan, and
Beaumont (2018) for a detailed treatment of many of these issues.

The above sketches the ABC posterior approximation, and a simple rejection-
based algorithm to sample from it. Of course, having identified the ABC pos-
terior as just another target density, we can use the whole ensemble of Monte
Carlo sampling techniques to sample from the resulting approximate posterior
(under the constraint of course that any evaluation of the intractable likelihood
is to be avoided). For instance, in the algorithm sketched above, where we
sampled 𝜃𝑖 from the prior, we can simply use 𝜉(𝑦, �̃�𝑖) as an importance weight
for 𝜃𝑖, instead of doing rejection sampling. More sophisticated samplers, us-
ing MCMC and particle-based methods such as SIS and SMC have been used
succesfully in the context of ABC (see also chapter 5). For a comprehensive
overview of the many sampling approaches for ABC problems, we refer again
to Sisson, Fan, and Beaumont (2018) (chapter 4).
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B Data sets and software

B.1 Data sets

Throughout this dissertation, we uses various data sets in our examples. Here
we specify the specific taxa, abbreviations and sources for the various data
sets (unless this was already done in the main text).

B.1.1 Rice

id taxon source accession

oba Oryza barthii Stein et al. (2018) oba
osj Oryza sativa vg. japonica . osj
oru Oryza rufipogon . oru
ogl Oryza glaberrima . ogl
oni Oryza nivara . oni
osi Oryza sativa vg. indica . osi

B.1.2 Drosophila

id taxon source accession

dere Drosophila erecta NCBI GCF_003286155.1_DereRS2
dana Drosophila ananassae . GCF_003285975.2_DanaRS2.1
dsim Drosophila simulans . GCF_000754195.2_ASM75419v2
dper Drosophila persimilis . GCF_003286085.1_DperRS2
dpse Drosophila pseudoobscura . GCF_009870125.1_UCI_Dpse_MV25
dmel Drosophila melanogaster . GCF_000001215.4_Release_6_plus_ISO
dyak Drosophila yakuba . GCF_000005975.2_dyak_caf1
dsec Drosophila sechellia . GCF_004382195.1_ASM438219v1
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B.1.3 Yeasts

id taxon source accession

ecy Eremothecium cymbalariae YGOB, v7-Aug2012 Ecymbalariae
ego Eremothecium gossypii . Egossypii
kla Kluyveromyces lactis . Klactis
lkl Lachancea kluyveri . Lkluyveri
lth Lachancea thermotolerans . Lthermotolerans
lwa Lachancea waltii . Lwaltii
tde Torulaspora delbrueckii . Tdelbrueckii
zro Zygosaccharomyces rouxii . Zrouxii
sce Saccharomyces cerivisae . Scerevisiae
suv Saccharomyces uvarum . Suvarum
tph Tetrapisispora blattae . Tblattae
vpo Vanderwaltozyma polyspora . Vpolyspora
nda Naumovozyma dairenensis . Ndairenensis
nca Naumovozyma castellii . Ncastellii
cgl Candida glabratra . Cglabrata

B.1.4 Primates

id taxon source accession

Hsapi Homo sapiens Ensembl (v102) Homo_sapiens.GRCh38
Ptrog Pan troglodytes . Pan_troglodytes.Pan_tro_3.0
Pabel Pongo abelii . Pongo_abelii.PPYG2
Nleuc Nomascus leucogenys . Nomascus_leucogenys.Nleu_3.0
Mmula Macaca mulatta . Macaca_mulatta.Mmul_10
Panub Papio anubis . Papio_anubis.Panu_3.0
Csaba Chlorocebus sabaeus . Chlorocebus_sabaeus.ChlSab1.1
Cjacc Callithrix jacchus . Callithrix_jacchus.ASM275486v1
Csyri Carlito syrichta . Carlito_syrichta.Tarsius_syrichta
Mmuri Microcebus murinus . Microcebus_murinus.Mmur_3.0
Pcoqu Propithecus coquereli . Propithecus_coquereli.Pcoq_1.0
Ogarn Otolemur garnettii . Otolemur_garnettii.OtoGar3

B.1.5 Land plants

Note that taxa in the table below appear in multiple data sets (referred to as the
dicots and land plants data sets in the main text). Carica papaya and Cycas
panzhihuaensis do not occur together in a single analysis, hence no confusion
is possible.
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id taxon source accession

mpo Marchantia polymorpha PLAZA 5.0 mpo
ppa Physcomitrium patens . ppa
atr Amborella trichopoda . atr
sgi Sequoiadendron giganteum . sgi
vvi Vitis vinifera . vvi
bvu Beta vulgaris . bvu
cqu Chenopodium quinoa . cqu
mtr Medicago truncatula . mtr
ptr Populus trichocarpa . ptr
sly Solanum lycopersicum . sly
ath Arabidopsis thaliana . ath
cpa (1) Carica papaya . cpa
afi Azolla filliculoides F.-W. Li et al. (2018) afi
scu Salvinia cucullata . scu
gbi Ginkgo biloba Liu et al. (2021) gbi
cpa (2) Cycas panzhihuaensis Y. Liu et al. (2022) cpa

B.1.6 Drosera

id taxon source accession

dca Drosera capensis unpublished (Renner et al. in prep.) dca
dre Drosera regia . dre
dsp Drosera spatulata . dsp
dmu Dionaeae muscipula . dmu
ave Aldrovanda vesiculosa . ave
vvi Vitis vinifera PLAZA 5.0 vvi
bvu Beta vulgaris . bvu
cqu Chenopodium quinoa . cqu

B.2 Software

Much research effort is hidden away in codebases. The main methodologi-
cal developments presented in this dissertation are implemented in free and
open source software libraries, implemented in the Julia programming lan-
guage (Bezanson et al. 2017). They are available at the following URLs (last
accessed, May 2022):

1. DeadBird (https://github.com/arzwa/DeadBird.jl): Package for Bayesian
and ML statistical inference for phylogenetic BDP models of gene content
evolution.

https://github.com/arzwa/DeadBird.jl
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2. Beluga (https://github.com/arzwa/Beluga.jl): Package for inference of an-
cient WGDs using reversible-jump MCMC and phylogenetic BDP models
of gene content evolution.

3. TwoTypeDLModel (https://github.com/arzwa/TowTypeDLModel):
Implements algorithms to compute the phylogenetic likelihood for the
two-type branching process model developed in chapter 3, as well as a
simple MCMC sampler to conduct Bayesian inference.

4. SmoothTree (https://github.com/arzwa/SmoothTree.jl): Package for
working with CCDs and conducting species tree inference under the MSC
using likelihood-free expectation propagation.

5. Whale (https://github.com/arzwa/Whale.jl): Package for Bayesian and
ML inference of reconciled gene trees and ancient WGDs using amalga-
mated likelihood estimation for phylogenetic BDP models of gene family
evolution.

Additional software developed by myself and used in this thesis include

1. NewickTree (https://github.com/arzwa/NewickTree.jl): A Julia package
for working with phylogenetic trees, centered around the Newick represen-
tation.

2. MacroSynteny (https://github.com/arzwa/MacroSynteny): A julia pack-
age for conducting Bayesian analyses of macrosynteny (in development,
used in the Drosera analyses in chapter 5).

3. MaereModel (https://github.com/arzwa/MaereModel): Some julia code
for conducting approximate Bayesian inference for the model of Maere et
al. (2005).

4. AdaptiveMCMC (https://github.com/arzwa/AdaptiveMCMC.jl): Im-
plements various adaptive proposal kernels to use as building blocks in
MH-like MCMC algorithms.

5. wgd (https://github.com/arzwa/wgd): A Python pipeline for constructing
𝐾S distributions and conducting colinearity analyses using genomic se-
quence data.

In addition, we have relied on a lot of free and open source software in our re-
search, developed by many devoted programmers across the world. Relevant
bioinformatics and phylogenetics software used for evolutionary genomics re-
search has been credited throughout the body of this work, but here we would
like to thank the developers of pandoc, vim, the Julia programming language,
the many Julia packages we have relied on (in particular, Distributions.jl, Tur-
ing.jl, Optim.jl, DifferentialEquations.jl, DataFrames.jl and Plots.jl), LATEX,
tikz, git, and many more, for making our lives easier.

https://github.com/arzwa/Beluga.jl
https://github.com/arzwa/TwoTypeDLModel
https://github.com/arzwa/SmoothTree.jl
https://github.com/arzwa/Whale.jl
https://github.com/arzwa/NewickTree.jl
https://github.com/arzwa/MacroSynteny
https://github.com/arzwa/MaereModel
https://github.com/arzwa/AdaptiveMCMC.jl
https://github.com/arzwa/wgd
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